IDEAS home Printed from https://ideas.repec.org/a/apb/jaterr/2016p81-86.html
   My bibliography  Save this article

Numerical simulation on flow and heat transfer characteristics of supercritical fluids in mini-channels

Author

Listed:
  • A. N. Oumer

    (Faculty of Mechanical Engineering, University of Malaysia Pahang, 26600 Pekan, Pahang, Malaysia)

  • N. T. Rao

    (Faculty of Mechanical Engineering, University of Malaysia Pahang, 26600 Pekan, Pahang, Malaysia)

  • F. Basraw

    (Faculty of Mechanical Engineering, University of Malaysia Pahang, 26600 Pekan, Pahang, Malaysia)

  • H. Ibrahim

    (Faculty of Mechanical Engineering, University of Malaysia Pahang, 26600 Pekan, Pahang, Malaysia)

Abstract

This paper investigated the flow and heat transfer characteristics of supercritical carbon dioxide (SC-CO2) and supercritical water (SC-H2O) in horizontal micro-channels using a CFD approach. Model of a straight circular pipe of stainless steel with internal and external radii of, and , respectively and a heated length of 55 mm were considered. For the simulation, carbon dioxide and water at supercritical pressures of 9.5 MPa and 22.07 MPa respectively were used, while uniform heat was applied on the outer surface of the tube. The thermodynamic properties for both fluids were obtained from the NIST Chemistry Web book. The simulated temperature and heat transfer coefficient variation were compared with experimental results from literature. In general, the simulation results were close to the experiment. Both the simulation and experimental results showed that the wall temperature increased along the tube length. As expected, the heat transfer coefficient values for both supercritical fluids decreased as the length of the tube. This was due to the reason that a maximum and dominant convection heat transfer occurred at the entrance of the heated section of the pipe. The results from this study could assist in decisions regarding the use of supercritical fluids in industries which involve heat transfer.

Suggested Citation

  • A. N. Oumer & N. T. Rao & F. Basraw & H. Ibrahim, 2016. "Numerical simulation on flow and heat transfer characteristics of supercritical fluids in mini-channels," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 2(3), pages 81-86.
  • Handle: RePEc:apb:jaterr:2016:p:81-86
    DOI: 10.20474/jater-2.3.2
    as

    Download full text from publisher

    File URL: https://tafpublications.com/platform/Articles/full-jater2.3.2.php
    Download Restriction: no

    File URL: https://tafpublications.com/gip_content/paper/jater-2.3.2.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.20474/jater-2.3.2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, X.L. & Li, G.X. & Tang, G.H. & Fan, Y.H. & Yang, D.L., 2023. "A generalized thermal deviation factor to evaluate the comprehensive stress of tubes under non-uniform heating," Energy, Elsevier, vol. 263(PA).
    2. Dingchen Wu & Mingshan Wei & Ran Tian & Siyu Zheng & Jundi He, 2022. "A Review of Flow and Heat Transfer Characteristics of Supercritical Carbon Dioxide under Cooling Conditions in Energy and Power Systems," Energies, MDPI, vol. 15(23), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:apb:jaterr:2016:p:81-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: A/Professor Akbar A. Khatibi (email available below). General contact details of provider: https://tafpublications.com/platform/published_papers/10 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.