IDEAS home Printed from https://ideas.repec.org/r/inm/ormnsc/v27y1981i12p1453-1459.html
   My bibliography  Save this item

Minimizing Variation of Flow Time in Single Machine Systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kubiak, Wieslaw & Cheng, Jinliang & Kovalyov, Mikhail Y., 2002. "Fast fully polynomial approximation schemes for minimizing completion time variance," European Journal of Operational Research, Elsevier, vol. 137(2), pages 303-309, March.
  2. Xinyu Sun & Tao Liu & Xin-Na Geng & Yang Hu & Jing-Xiao Xu, 2023. "Optimization of scheduling problems with deterioration effects and an optional maintenance activity," Journal of Scheduling, Springer, vol. 26(3), pages 251-266, June.
  3. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
  4. Y. P. Aneja & S. N. Kabadi & A. Nagar, 1998. "Minimizing weighted mean absolute deviation of flow times in single machine systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(3), pages 297-311, April.
  5. Wang, Ji-Bo & Xia, Zun-Quan, 2007. "Single machine scheduling problems with controllable processing times and total absolute differences penalties," European Journal of Operational Research, Elsevier, vol. 177(1), pages 638-645, February.
  6. Xia, Yu & Chen, Bintong & Yue, Jinfeng, 2008. "Job sequencing and due date assignment in a single machine shop with uncertain processing times," European Journal of Operational Research, Elsevier, vol. 184(1), pages 63-75, January.
  7. J. Steve Davis & John J. Kanet, 1993. "Single‐machine scheduling with early and tardy completion costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 85-101, February.
  8. Gur Mosheiov, 2000. "Minimizing mean absolute deviation of job completion times from the mean completion time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(8), pages 657-668, December.
  9. Dvir Shabtay & Nufar Gaspar & Liron Yedidsion, 2012. "A bicriteria approach to scheduling a single machine with job rejection and positional penalties," Journal of Combinatorial Optimization, Springer, vol. 23(4), pages 395-424, May.
  10. Awi Federgruen & Gur Mosheiov, 1993. "Simultaneous optimization of efficiency and performance balance measures in single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(7), pages 951-970, December.
  11. Srirangacharyulu, B. & Srinivasan, G., 2013. "An exact algorithm to minimize mean squared deviation of job completion times about a common due date," European Journal of Operational Research, Elsevier, vol. 231(3), pages 547-556.
  12. Leyvand, Yaron & Shabtay, Dvir & Steiner, George, 2010. "A unified approach for scheduling with convex resource consumption functions using positional penalties," European Journal of Operational Research, Elsevier, vol. 206(2), pages 301-312, October.
  13. Nasini, Stefano & Nessah, Rabia, 2021. "An almost exact solution to the min completion time variance in a single machine," European Journal of Operational Research, Elsevier, vol. 294(2), pages 427-441.
  14. Ng, C. T. & Cai, X. & Cheng, T. C. E., 1996. "A tight lower bound for the completion time variance problem," European Journal of Operational Research, Elsevier, vol. 92(1), pages 211-213, July.
  15. Yi-Chun Wang & Ji-Bo Wang, 2023. "Study on Convex Resource Allocation Scheduling with a Time-Dependent Learning Effect," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
  16. Cai, X., 1996. "V-shape property for job sequences that minimize the expected completion time variance," European Journal of Operational Research, Elsevier, vol. 91(1), pages 118-123, May.
  17. G Mosheiov, 2008. "Minimizing total absolute deviation of job completion times: extensions to position-dependent processing times and parallel identical machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(10), pages 1422-1424, October.
  18. Hongyu He & Mengqi Liu & Ji-Bo Wang, 2017. "Resource constrained scheduling with general truncated job-dependent learning effect," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 626-644, February.
  19. Cheng, Jinliang & Kubiak, Wieslaw, 2005. "A half-product based approximation scheme for agreeably weighted completion time variance," European Journal of Operational Research, Elsevier, vol. 162(1), pages 45-54, April.
  20. Koulamas, Christos & Kyparisis, George J., 2023. "Two-stage no-wait proportionate flow shop scheduling with minimal service time variation and optional job rejection," European Journal of Operational Research, Elsevier, vol. 305(2), pages 608-616.
  21. Xuyin Wang & Xiangpei Hu & Weiguo Liu, 2015. "Scheduling with Deteriorating Jobs and Non-Simultaneous Machine Available Times," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-13, December.
  22. Liu, Ming & Wang, Shijin & Chu, Chengbin, 2013. "Scheduling deteriorating jobs with past-sequence-dependent delivery times," International Journal of Production Economics, Elsevier, vol. 144(2), pages 418-421.
  23. Koulamas, Christos & Kyparisis, George J., 2008. "Single-machine scheduling problems with past-sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1045-1049, June.
  24. Adamopoulos, G. I. & Pappis, C. P., 1996. "Scheduling jobs with different, job-dependent earliness and tardiness penalties using the SLK method," European Journal of Operational Research, Elsevier, vol. 88(2), pages 336-344, January.
  25. Nasini, Stefano & Nessah, Rabia, 2024. "Time-flexible min completion time variance in a single machine by quadratic programming," European Journal of Operational Research, Elsevier, vol. 312(2), pages 427-444.
  26. Adamopoulos, G. I. & Pappis, C. P., 1995. "The CON due-date determination method with processing time-dependent lateness penalties," International Journal of Production Economics, Elsevier, vol. 40(1), pages 29-36, June.
  27. C.T. Ng & X. Cai & T.C.E. Cheng, 1999. "Probabilistic analysis of an asymptotically optimal solution for the completion time variance problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(4), pages 373-398, June.
  28. Weng, Xiaohua & Ventura, Jose A., 1996. "Scheduling about a given common due date to minimize mean squared deviation of completion times," European Journal of Operational Research, Elsevier, vol. 88(2), pages 328-335, January.
  29. Baruch Mor & Gur Mosheiov, 2018. "A note: minimizing total absolute deviation of job completion times on unrelated machines with general position-dependent processing times and job-rejection," Annals of Operations Research, Springer, vol. 271(2), pages 1079-1085, December.
  30. Seo, Jong Hwa & Kim, Chae-Bogk & Lee, Dong Hoon, 2001. "Minimizing mean squared deviation of completion times with maximum tardiness constraint," European Journal of Operational Research, Elsevier, vol. 129(1), pages 95-104, February.
  31. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
  32. Li, Yongqiang & Li, Gang & Sun, Linyan & Xu, Zhiyong, 2009. "Single machine scheduling of deteriorating jobs to minimize total absolute differences in completion times," International Journal of Production Economics, Elsevier, vol. 118(2), pages 424-429, April.
  33. X. Cai & S. Zhou, 1997. "Scheduling stochastic jobs with asymmetric earliness and tardiness penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(6), pages 531-557, September.
  34. Dar-Li Yang & Wen-Hung Kuo, 2009. "Single-machine scheduling with both deterioration and learning effects," Annals of Operations Research, Springer, vol. 172(1), pages 315-327, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.