IDEAS home Printed from https://ideas.repec.org/r/eee/phsmap/v387y2008i2p580-586.html
   My bibliography  Save this item

A mobile lattice gas model for simulating pedestrian evacuation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Tian, Xiaoyong & Li, Kun & Kang, Zengxin & Peng, Yun & Cui, Hongjun, 2020. "Simulating the dynamical features of evacuation governed by periodic vibrations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  2. Tamang, Nutthavuth & Sun, Yi, 2023. "Application of the dynamic Monte Carlo method to pedestrian evacuation dynamics," Applied Mathematics and Computation, Elsevier, vol. 445(C).
  3. Li, Chuan-Yao & Yang, Rui-Yu & Xu, Guang-ming, 2019. "Impacts of group behavior on boarding process at the platform of high speed railway station," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
  4. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
  5. Guo, Xiwei & Chen, Jianqiao & You, Suozhu & Wei, Junhong, 2013. "Modeling of pedestrian evacuation under fire emergency based on an extended heterogeneous lattice gas model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 1994-2006.
  6. Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
  7. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
  8. Chen, Chang-Kun & Li, Jian & Zhang, Dong, 2012. "Study on evacuation behaviors at a T-shaped intersection by a force-driving cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2408-2420.
  9. Srinivasan, Aravinda Ramakrishnan & Karan, Farshad Salimi Naneh & Chakraborty, Subhadeep, 2017. "Pedestrian dynamics with explicit sharing of exit choice during egress through a long corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 770-782.
  10. Jie Xu & Yao Ning & Heng Wei & Wei Xie & Jianyuan Guo & Limin Jia & Yong Qin, 2015. "Route Choice in Subway Station during Morning Peak Hours: A Case of Guangzhou Subway," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-8, March.
  11. Tang, Ming & Jia, Hongfei & Ran, Bin & Li, Jun, 2016. "Analysis of the pedestrian arching at bottleneck based on a bypassing behavior model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 242-258.
  12. Jiang, Yan-Qun & Zhou, Shu-Guang & Duan, Ya-Li & Huang, Xiao-Qian, 2023. "A viscous continuum model with smoke effect for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
  13. Jiang, Yan-Qun & Zhang, Wei & Zhou, Shu-Guang, 2016. "Comparison study of the reactive and predictive dynamic models for pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 51-61.
  14. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
  15. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
  16. Guo, Xiwei & Chen, Jianqiao & Zheng, Yaochen & Wei, Junhong, 2012. "A heterogeneous lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 582-592.
  17. Meiling Xiao & Yao Zhang & Haiyan Zhu, 2019. "The mechanism of hindering occupants’ evacuation from seismic responses of building," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 669-692, March.
  18. Hou, Lei & Liu, Jian-Guo & Pan, Xue & Wang, Bing-Hong, 2014. "A social force evacuation model with the leadership effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 93-99.
  19. Shang, Hua-Yan & Huang, Hai-Jun & Zhang, Yi-Ming, 2015. "An extended mobile lattice gas model allowing pedestrian step size variable," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 283-293.
  20. Li, Yongxing & Yang, Xiaoxia & Wang, Zijia & Chen, Liang & Chen, Yanyan, 2022. "Lane-design for mixed pedestrian flow in T-shaped passage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
  21. Jinrui Liu & Maosheng Li & Panpan Shu, 2021. "Subdivided Cellular Automata Model Considering Anticipation Floor Field and Analysis of Pedestrian Detour Behavior," Sustainability, MDPI, vol. 13(19), pages 1-25, September.
  22. Yunqiang Xue & Meng Zhong & Luowei Xue & Bing Zhang & Haokai Tu & Caifeng Tan & Qifang Kong & Hongzhi Guan, 2022. "Simulation Analysis of Bus Passenger Boarding and Alighting Behavior Based on Cellular Automata," Sustainability, MDPI, vol. 14(4), pages 1-16, February.
  23. Li, Tao & Shi, Dongdong & Chen, Juan & Li, Huiwen & Ma, Jian, 2022. "Experimental study of movement characteristics for different walking postures in a narrow channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
  24. Moonsoo Ko & Taewan Kim & Keemin Sohn, 2013. "Calibrating a social-force-based pedestrian walking model based on maximum likelihood estimation," Transportation, Springer, vol. 40(1), pages 91-107, January.
  25. Kang, Zengxin & Zhang, Lei & Li, Kun, 2019. "An improved social force model for pedestrian dynamics in shipwrecks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 355-362.
  26. Wu, Jie & Wang, Xiuling & Chen, Jinjin & Shu, Gang & Li, Ya, 2015. "The position of a door can significantly impact on pedestrians’ evacuation time in an emergency," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 29-35.
  27. Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.