IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10621-d642484.html
   My bibliography  Save this article

Subdivided Cellular Automata Model Considering Anticipation Floor Field and Analysis of Pedestrian Detour Behavior

Author

Listed:
  • Jinrui Liu

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410083, China)

  • Maosheng Li

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410083, China)

  • Panpan Shu

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410083, China)

Abstract

The micro-pedestrian simulation model represented by the cellular automata model is an important simulation model. Improvements in various aspects enable a better description of the various behaviors of pedestrians, such as pedestrian avoidance behavior, companion behavior, as well as transcendence behavior, waiting behavior and detour behavior. This paper takes the pedestrian detour behavior in the circle antipode experiment as the main entry point. The subdivision cellular automaton model is integrated into the prediction field to model and simulate the detour behavior. At the same time, it explores the degree of subdivision of the cell. Pedestrian heterogeneity and the influence of predicted field potential energy on the simulated pedestrian trajectory. Finally, based on the temporal and spatial indicators of pedestrian trajectory characteristics, the KS test and DTW method are used to evaluate the similarity of the trajectory distribution characteristics and time series characteristics with experimental samples, and evaluate and compare models with or without heterogeneity. The results show that the trajectory characteristics of heterogeneous pedestrians are closer to the experiment than homogeneous pedestrians.

Suggested Citation

  • Jinrui Liu & Maosheng Li & Panpan Shu, 2021. "Subdivided Cellular Automata Model Considering Anticipation Floor Field and Analysis of Pedestrian Detour Behavior," Sustainability, MDPI, vol. 13(19), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10621-:d:642484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, R.Y. & Huang, H.J., 2008. "A mobile lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 580-586.
    2. Guo, Ren-Yong, 2014. "New insights into discretization effects in cellular automata models for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 1-11.
    3. Suma, Yushi & Yanagisawa, Daichi & Nishinari, Katsuhiro, 2012. "Anticipation effect in pedestrian dynamics: Modeling and experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 248-263.
    4. Zhuang, Yifan & Liu, Zhigang & Schadschneider, Andreas & Yang, Lizhong & Huang, Jiajun, 2021. "Exploring the behavior of self-organized queuing for pedestrian flow through a non-service bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
    2. Jiang, Yan-Qun & Zhang, Wei & Zhou, Shu-Guang, 2016. "Comparison study of the reactive and predictive dynamic models for pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 51-61.
    3. Shang, Hua-Yan & Huang, Hai-Jun & Zhang, Yi-Ming, 2015. "An extended mobile lattice gas model allowing pedestrian step size variable," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 283-293.
    4. Huang, Rong & Zhao, Xuan & Zhou, Chenyu & Kong, Lingchen & Liu, Chengqing & Yu, Qiang, 2022. "Static floor field construction and fine discrete cellular automaton model: Algorithms, simulations and insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    5. Tang, Ming & Jia, Hongfei & Ran, Bin & Li, Jun, 2016. "Analysis of the pedestrian arching at bottleneck based on a bypassing behavior model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 242-258.
    6. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    7. Li, Yang & Chen, Maoyin & Zheng, Xiaoping & Dou, Zhan & Cheng, Yuan, 2020. "Relationship between behavior aggressiveness and pedestrian dynamics using behavior-based cellular automata model," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    8. Kaji, Masaru & Inohara, Takehiro, 2017. "Cellular automaton simulation of unidirectional pedestrians flow in a corridor to reproduce the unique velocity profile of Hagen–Poiseuille flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 85-95.
    9. Cui, Geng & Yanagisawa, Daichi & Nishinari, Katsuhiro, 2023. "Learning from experimental data to simulate pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    10. Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    11. Yunqiang Xue & Meng Zhong & Luowei Xue & Bing Zhang & Haokai Tu & Caifeng Tan & Qifang Kong & Hongzhi Guan, 2022. "Simulation Analysis of Bus Passenger Boarding and Alighting Behavior Based on Cellular Automata," Sustainability, MDPI, vol. 14(4), pages 1-16, February.
    12. Li, Shuang & Yu, Xiaohui & Zhang, Yanjuan & Zhai, Changhai, 2018. "A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1238-1250.
    13. Chen, Chang-Kun & Li, Jian & Zhang, Dong, 2012. "Study on evacuation behaviors at a T-shaped intersection by a force-driving cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2408-2420.
    14. Cirillo, Emilio N.M. & Muntean, Adrian, 2013. "Dynamics of pedestrians in regions with no visibility— A lattice model without exclusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3578-3588.
    15. Geng, Zhongfei & Li, Xingli & Kuang, Hua & Bai, Xuecen & Fan, Yanhong, 2019. "Effect of uncertain information on pedestrian dynamics under adverse sight conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 681-691.
    16. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    17. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    18. Feliciani, Claudio & Nishinari, Katsuhiro, 2016. "An improved Cellular Automata model to simulate the behavior of high density crowd and validation by experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 135-148.
    19. Li, Yongxing & Yang, Xiaoxia & Wang, Zijia & Chen, Liang & Chen, Yanyan, 2022. "Lane-design for mixed pedestrian flow in T-shaped passage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    20. Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10621-:d:642484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.