IDEAS home Printed from https://ideas.repec.org/r/eee/phsmap/v387y2008i27p6801-6811.html
   My bibliography  Save this item

Comparison study of global and local approaches describing critical phenomena on the Polish stock exchange market

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Molina-Muñoz, Jesús & Mora-Valencia, Andrés & Perote, Javier, 2020. "Market-crash forecasting based on the dynamics of the alpha-stable distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
  2. Kristoufek, Ladislav, 2009. "R/S analysis and DFA: finite sample properties and confidence intervals," MPRA Paper 16446, University Library of Munich, Germany.
  3. Domino, Krzysztof & Błachowicz, Tomasz, 2014. "The use of copula functions for modeling the risk of investment in shares traded on the Warsaw Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 77-85.
  4. Lin, Xiaoqiang & Fei, Fangyu, 2013. "Long memory revisit in Chinese stock markets: Based on GARCH-class models and multiscale analysis," Economic Modelling, Elsevier, vol. 31(C), pages 265-275.
  5. Gulich, Damián & Baglietto, Gabriel & Rozenfeld, Alejandro F., 2018. "Temporal correlations in the Vicsek model with vectorial noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 590-604.
  6. da Fonseca, Eder Lucio & Ferreira, Fernando F. & Muruganandam, Paulsamy & Cerdeira, Hilda A., 2013. "Identifying financial crises in real time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1386-1392.
  7. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "The long memory and the transaction cost in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 312-320.
  8. Stanis{l}aw Dro.zd.z & Rafa{l} Kowalski & Pawe{l} O'swic{e}cimka & Rafa{l} Rak & Robert Gc{e}barowski, 2018. "Dynamical variety of shapes in financial multifractality," Papers 1809.06728, arXiv.org.
  9. Kristoufek, Ladislav, 2009. "Distinguishing between short and long range dependence: Finite sample properties of rescaled range and modified rescaled range," MPRA Paper 16424, University Library of Munich, Germany.
  10. Rypdal, Martin & Sirnes, Espen & Løvsletten, Ola & Rypdal, Kristoffer, 2013. "Assessing market uncertainty by means of a time-varying intermittency parameter for asset price fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3335-3343.
  11. Domino, Krzysztof, 2012. "The use of the Hurst exponent to investigate the global maximum of the Warsaw Stock Exchange WIG20 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 156-169.
  12. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
  13. Martin Magris & Jiyeong Kim & Esa Rasanen & Juho Kanniainen, 2017. "Long-range Auto-correlations in Limit Order Book Markets: Inter- and Cross-event Analysis," Papers 1711.03534, arXiv.org.
  14. Ladislav Kristoufek, 2012. "Fractal Markets Hypothesis And The Global Financial Crisis: Scaling, Investment Horizons And Liquidity," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1-13.
  15. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Why credit risk markets are predestined for exhibiting log-periodic power law structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 427-449.
  16. Hanwool Jang & Yena Song & Sungbin Sohn & Kwangwon Ahn, 2018. "Real Estate Soars and Financial Crises: Recent Stories," Sustainability, MDPI, vol. 10(12), pages 1-12, December.
  17. Krzysztof Domino, 2016. "The use of the multi-cumulant tensor analysis for the algorithmic optimisation of investment portfolios," Papers 1605.09181, arXiv.org, revised Aug 2016.
  18. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
  19. Jang, Hanwool & Song, Yena & Ahn, Kwangwon, 2020. "Can government stabilize the housing market? The evidence from South Korea," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
  20. Lahmiri, Salim, 2015. "Long memory in international financial markets trends and short movements during 2008 financial crisis based on variational mode decomposition and detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 130-138.
  21. Cajueiro, Daniel O. & Tabak, Benjamin M. & Werneck, Filipe K., 2009. "Can we predict crashes? The case of the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1603-1609.
  22. Oussama Tilfani & My Youssef El Boukfaoui, 2020. "Multifractal Analysis of African Stock Markets During the 2007–2008 US Crisis," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-31, January.
  23. Mishelle Doorasamy & Prince Kwasi Sarpong, 2018. "Fractal Market Hypothesis and Markov Regime Switching Model: A Possible Synthesis and Integration," International Journal of Economics and Financial Issues, Econjournals, vol. 8(1), pages 93-100.
  24. Xing, Dun-Zhong & Li, Hai-Feng & Li, Jiang-Cheng & Long, Chao, 2021. "Forecasting price of financial market crash via a new nonlinear potential GARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
  25. Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
  26. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
  27. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
  28. Domino, Krzysztof, 2011. "The use of the Hurst exponent to predict changes in trends on the Warsaw Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 98-109.
  29. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
  30. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
  31. Ferreira, Paulo, 2018. "Long-range dependencies of Eastern European stock markets: A dynamic detrended analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 454-470.
  32. Domino, Krzysztof & Błachowicz, Tomasz, 2015. "The use of copula functions for modeling the risk of investment in shares traded on world stock exchanges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 142-151.
  33. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "Efficiency of Thai stock markets: Detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 204-209.
  34. Domino, Krzysztof, 2017. "The use of the multi-cumulant tensor analysis for the algorithmic optimisation of investment portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 267-276.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.