IDEAS home Printed from https://ideas.repec.org/r/eee/phsmap/v387y2008i21p5189-5196.html
   My bibliography  Save this item

Long memory features in the high frequency data of the Korean stock market

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bentes, Sónia R., 2021. "How COVID-19 has affected stock market persistence? Evidence from the G7’s," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
  2. Xiao, Weilin & Zhang, Weiguo & Xu, Weijun & Zhang, Xili, 2012. "The valuation of equity warrants in a fractional Brownian environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1742-1752.
  3. Cai, Chunhao & Cheng, Xuwen & Xiao, Weilin & Wu, Xiang, 2019. "Parameter identification for mixed fractional Brownian motions with the drift parameter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
  4. Kumar, Dilip, 2014. "Long range dependence in the high frequency USD/INR exchange rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 134-148.
  5. Xiao, Weilin & Zhang, Weiguo & Zhang, Xili & Chen, Xiaoyan, 2014. "The valuation of equity warrants under the fractional Vasicek process of the short-term interest rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 320-337.
  6. Tan, Pei P. & Galagedera, Don U.A. & Maharaj, Elizabeth A., 2012. "A wavelet based investigation of long memory in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2330-2341.
  7. Xiao, Weilin & Zhang, Xili, 2016. "Pricing equity warrants with a promised lowest price in Merton’s jump–diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 219-238.
  8. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
  9. Zhou, Qing & Zhang, Xili, 2020. "Pricing equity warrants in Merton jump–diffusion model with credit risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
  10. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Contemporaneous aggregation and long-memory property of returns and volatility in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4844-4854.
  11. Mohammadi, M. & Rezakhah, S. & Modarresi, N., 2020. "Semi-Lévy driven continuous-time GARCH process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
  12. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.
  13. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2013. "Intraday volatility spillovers between spot and futures indices: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1795-1802.
  14. Lahmiri, Salim, 2015. "Long memory in international financial markets trends and short movements during 2008 financial crisis based on variational mode decomposition and detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 130-138.
  15. Xu, Dan & Beck, Christian, 2016. "Transition from lognormal to χ2-superstatistics for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 173-183.
  16. Hiremath, Gourishankar S & Bandi, Kamaiah, 2010. "Long Memory in Stock Market Volatility:Evidence from India," MPRA Paper 48519, University Library of Munich, Germany.
  17. Pirino, Davide, 2009. "Jump detection and long range dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1150-1156.
  18. Naeem, Muhammad & Shahbaz, Muhammad & Saleem, Kashif & Mustafa, Faisal, 2019. "Risk analysis of high frequency precious metals returns by using long memory model," Resources Policy, Elsevier, vol. 61(C), pages 399-409.
  19. Bentes, Sónia R., 2022. "On the stylized facts of precious metals’ volatility: A comparative analysis of pre- and during COVID-19 crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
  20. Boubaker, Heni & Sghaier, Nadia, 2015. "Semiparametric generalized long-memory modeling of some mena stock market returns: A wavelet approach," Economic Modelling, Elsevier, vol. 50(C), pages 254-265.
  21. Mahalingam GAYATHRI & Murugesan SELVAM & Kasilingam LINGARAJA & Vinayagamoorthi VASANTH & Venkatraman KARPAGAM, 2013. "Fractal Dimension of S&P CNX Nifty Stock Returns," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 3(9), pages 1166-1190, September.
  22. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
  23. Anagnostidis, Panagiotis & Emmanouilides, Christos J., 2015. "Nonlinearity in high-frequency stock returns: Evidence from the Athens Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 473-487.
  24. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
  25. Sun, Lin, 2013. "Pricing currency options in the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3441-3458.
  26. Kang, Sang Hoon & Cho, Hwan-Gue & Yoon, Seong-Min, 2009. "Modeling sudden volatility changes: Evidence from Japanese and Korean stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3543-3550.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.