IDEAS home Printed from https://ideas.repec.org/r/eee/jotrge/v62y2017icp172-183.html
   My bibliography  Save this item

Topological evolution of a metropolitan rail transport network: The case of Stockholm

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yang, Zhijie & Chen, Xiaolong, 2018. "Evolution assessment of Shanghai Urban Rail Transit Network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1263-1274.
  2. Shaopei Chen & Dachang Zhuang, 2020. "Evolution and Evaluation of the Guangzhou Metro Network Topology Based on an Integration of Complex Network Analysis and GIS," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
  3. Zhang, Jianhua & Wang, Meng, 2019. "Transportation functionality vulnerability of urban rail transit networks based on movingblock: The case of Nanjing metro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
  4. Meng, Yangyang & Zhao, Xiaofei & Liu, Jianzhong & Qi, Qingjie & Zhou, Wei, 2023. "Data-driven complexity analysis of weighted Shenzhen Metro network based on urban massive mobility in the rush hours," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
  5. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Comparison analysis on complex topological network models of urban rail transit: A case study of Shenzhen Metro in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
  6. Pisit Jarumaneeroj & Amar Ramudhin & Jorge Barnett Lawton, 2023. "A connectivity-based approach to evaluating port importance in the global container shipping network," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 602-622, September.
  7. Ding, Rui & Ujang, Norsidah & Hamid, Hussain bin & Manan, Mohd Shahrudin Abd & He, Yuou & Li, Rong & Wu, Jianjun, 2018. "Detecting the urban traffic network structure dynamics through the growth and analysis of multi-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 800-817.
  8. Chun-Hsiang Chan & Tzai-Hung Wen, 2021. "Revisiting the Effects of High-Speed Railway Transfers in the Early COVID-19 Cross-Province Transmission in Mainland China," IJERPH, MDPI, vol. 18(12), pages 1-17, June.
  9. Yangyang Meng & Qingjie Qi & Jianzhong Liu & Wei Zhou, 2022. "Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
  10. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
  11. B. G. Tóth, 2021. "The effect of attacks on the railway network of Hungary," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 567-587, June.
  12. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
  13. Varameth Vichiensan & Vasinee Wasuntarasook & Titipakorn Prakayaphun & Masanobu Kii & Yoshitsugu Hayashi, 2023. "Influence of Urban Railway Network Centrality on Residential Property Values in Bangkok," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
  14. Feng, Shumin & Xin, Mengwei & Lv, Tianling & Hu, Baoyu, 2019. "A novel evolving model of urban rail transit networks based on the local-world theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
  15. Luo, Ding & Cats, Oded & van Lint, Hans & Currie, Graham, 2019. "Integrating network science and public transport accessibility analysis for comparative assessment," Journal of Transport Geography, Elsevier, vol. 80(C).
  16. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Exploring node importance evolution of weighted complex networks in urban rail transit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
  17. Wu, Chunliang & Kim, Inhi, 2020. "Analyzing the structural properties of bike-sharing networks: Evidence from the United States, Canada, and China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 52-71.
  18. Cats, Oded & Birch, Nigel, 2021. "Multi-modal network evolution in polycentric regions," Journal of Transport Geography, Elsevier, vol. 96(C).
  19. Ma, Min & Hu, Dawei & Chien, Steven I-Jy & Liu, Jie & Yang, Xing & Ma, Zhuanglin, 2022. "Evolution assessment of urban rail transit networks: A case study of Xi’an, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
  20. Hu, Xinlei & Huang, Jie & Shi, Feng, 2022. "A robustness assessment with passenger flow data of high-speed rail network in China," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
  21. Cats, Oded & Krishnakumari, Panchamy, 2020. "Metropolitan rail network robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
  22. Cats, Oded & Vermeulen, Alex & Warnier, Martijn & van Lint, Hans, 2020. "Modelling growth principles of metropolitan public transport networks," Journal of Transport Geography, Elsevier, vol. 82(C).
  23. Chan, Ho-Yin & Chen, Anthony & Li, Guoyuan & Xu, Xiangdong & Lam, William, 2021. "Evaluating the value of new metro lines using route diversity measures: The case of Hong Kong's Mass Transit Railway system," Journal of Transport Geography, Elsevier, vol. 91(C).
  24. Rui Ding & Jun Fu & Yiming Du & Linyu Du & Tao Zhou & Yilin Zhang & Siwei Shen & Yuqi Zhu & Shihui Chen, 2022. "Structural Evolution and Community Detection of China Rail Transit Route Network," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
  25. Jean-Philippe Meloche & Vincent Trotignon & François Vaillancourt, 2021. "Densification ou prolongement des réseaux de transport structurants ? Une recension des écrits sur les coûts et les bénéfices attendus," CIRANO Project Reports 2020rp-28, CIRANO.
  26. Jiangang Shi & Shiping Wen & Xianbo Zhao & Guangdong Wu, 2019. "Sustainable Development of Urban Rail Transit Networks: A Vulnerability Perspective," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
  27. Li, Tao & Rong, Lili, 2020. "A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 666-681.
  28. Zhang, Dezhi & Zhang, Fangtao & Liang, Yijing, 2021. "An evolutionary model of the international logistics network based on the Belt and Road perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
  29. Dai, Liang & Derudder, Ben & Liu, Xingjian, 2018. "The evolving structure of the Southeast Asian air transport network through the lens of complex networks, 1979–2012," Journal of Transport Geography, Elsevier, vol. 68(C), pages 67-77.
  30. Chen, Junlan & Pu, Ziyuan & Guo, Xiucheng & Cao, Jieyu & Zhang, Fang, 2023. "Multiperiod metro timetable optimization based on the complex network and dynamic travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.