Advanced Search
MyIDEAS: Login to save this paper or follow this series

Robust performance hypothesis testing with the variance

Contents:

Author Info

  • Olivier Ledoit
  • Michael Wolf

Abstract

Applied researchers often test for the difference of the variance of two investment strategies; in particular, when the investment strategies under consideration aim to implement the global minimum variance portfolio. A popular tool to this end is the F-test for the equality of variances. Unfortunately, this test is not valid when the returns are correlated, have tails heavier than the normal distribution, or are of time series nature. Instead, we propose the use of robust inference methods. In particular, we suggest to construct a studentized time series bootstrap confidence interval for the ratio of the two variances and to declare the two variances different if the value one is not contained in the obtained interval. This approach has the advantage that one can simply resample from the observed data as opposed to some null-restricted data. A simulation study demonstrates the improved finite-sample performance compared to existing methods.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.iew.uzh.ch/wp/iewwp516.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Institute for Empirical Research in Economics - University of Zurich in its series IEW - Working Papers with number 516.

as in new window
Length:
Date of creation: Oct 2010
Date of revision:
Handle: RePEc:zur:iewwpx:516

Contact details of provider:
Postal: Bl├╝mlisalpstrasse 10, CH-8006 Z├╝rich
Phone: +41-1-634 22 05
Fax: +41-1-634 49 07
Email:
Web page: http://www.econ.uzh.ch/
More information through EDIRC

Related research

Keywords: Bootstrap; HAC inference; variance;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:zur:iewwpx:516. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marita Kieser).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.