Advanced Search
MyIDEAS: Login to save this paper or follow this series

Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations

Contents:

Author Info

  • Baker, Christopher T. H.
  • Buckwar, Evelyn
Registered author(s):

    Abstract

    Results are presented on the stability of solutions of stochastic delay differential equations with multiplicative noise and of convergent numerical solutions obtained by a a method of Euler-Maruyama type. An attempt is made to provide a fairly self-contained presentation. A basic concept of the stability of a solution of an evolutionary stochastic delay differential equation is concerned with the sensitivity of the solution to perturbations in the initial function. We recall the stability definitions considered herein and show that an inequality of Halanay type (derivable via comparison theory)j and deterministic results can be employed to derive stability conditions for solutions of suitable equations. In practice, dosed form solutions of stochastic delay differential equations are unlikely to he available. In the second part of the paper a stability theory for numerical solutions (solutions of Euler type) is considered. A convergence result is recalled for completeness and new stability results are obtained using a discrete analogue of the continuous Halanay-type inequality and results for a deterministic recurrence relation. Various results for stochastic (ordinary) differential equations with no time lag or for deterministic delay differential equations can he deduced from the results given here. --

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://econstor.eu/bitstream/10419/62674/1/725962259.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes in its series SFB 373 Discussion Papers with number 2001,94.

    as in new window
    Length:
    Date of creation: 2001
    Date of revision:
    Handle: RePEc:zbw:sfb373:200194

    Contact details of provider:
    Postal: Spandauer Str. 1,10178 Berlin
    Phone: +49-30-2093-5708
    Fax: +49-30-2093-5617
    Email:
    Web page: http://www.wiwi.hu-berlin.de/
    More information through EDIRC

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:200194. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.