Advanced Search
MyIDEAS: Login to save this paper or follow this series

Dynamic Q-investment functions for Germany using panel balance sheet data and a new algorithm for the capital stock at replacement values

Contents:

Author Info

  • Bellgardt, Egon
  • Behr, Andreas
Registered author(s):

    Abstract

    The paper explores the investment behaviour of German firms in the context of the Qapproach, which plays a dominant role in empirical investment research. The analysis is based on the Deutsche Bundesbank's corporate balance sheet statistics. The panel data set contains some 2,300 German firms' balance sheet data covering the years 1988-1998. While the Q-theory is mainly applied on the basis of stock market data, which facilitates the exploitation of market expectations and the calculation of average Q, the direct forecasting approach (Chirinko 1993) suggested by Abel and Blanchard (1986) and extended to panel data by Gilchrist and Himmelberg (1995, 1998) enables the Q-theory to be applied to non-quoted firms which are by far the majority in Germany. One of the key variables when using balance sheet data, which has attracted much detailed research, is firms' net capital stock at replacement costs. The challenge is to transform historical cost data, depreciated at non-economic, tax-oriented depreciation rates, into unreported and probably unknown economically meaningful data at actual replacement values. We suggest a complex procedure for calculating reliable replacement values of a firm's capital stock. To calculate Q we follow two different operationalisation strategies. First we estimate average Q based on balance sheet data by forecasting the present value of future profits using a VAR model. Second, we estimate marginal Q following the approach suggested by Gilchrist and Himmelberg. We compare the results from two different estimation techniques for dynamic investment models, GMM and direct bias correction. The results show that marginal as well as average Q influence investment significantly. When classifying the firms by size, we find that smaller firms react more strongly to Q and, to a lesser extent, to lagged investment. -- Die vorliegende Arbeit untersucht das Investitionsverhalten deutscher Unternehmen im Rahmen der Q-Theorie, die eine der dominierenden Investitionstheorien darstellt. Grundlage der geschätzten Investitionsfunktionen ist die Unternehmensbilanzstatistik der Deutschen Bundesbank. Der Paneldatensatz umfasst über 2300 Unternehmen und den Zeitraum 1988 bis 1998. Die übliche Verwendung von Aktienkursen zur Berechnung des durchschnittlichen Q beschränkt die Anwendung der Q-Theorie auf börsennotierten Unternehmen. Die explizite Modellierung eines Prognosemodells (direct forecasting appraoch, Chirinko (1993)) in Anlehnung an Arbeiten von Abel and Blanchard (1986) und Gilchrist and Himmelberg (1995, 1998) ermöglicht die Anwendung auch für nicht börsennotierte Unternehmen, die in Deutschland eindeutig dominieren. Eine zentrale Größe der Analyse des Investitionsverhaltens auf der Grundlage von Unternehmensbilanzdaten ist der Kapitalstock der Unternehmen zu Wiederbeschaffungskosten anstelle des bilanziellen Nettoanlagevermögens zu historischen Anschaffungskosten. In der Arbeit wird ein komplexer Algorithmus zu einer möglichst exakten Schätzung vorgeschlagen. Zur Berechnung von Q werden zwei unterschiedliche Operationalisierungsstrategien verfolgt. Zum einen wird in Anlehnung an Abel und Blanchard das durchschnittliche Q über eine Schätzung des Marktwertes des Eigenkapitals mittels eines Vektor- Autoregressiven-Modells für Paneldaten ermittelt. Zum anderen wird auf dem Ansatz von Gilchrist and Himmelberg beruhend eine Abschätzung des marginalen Q vorgenommen. Die Ergebnisse der Q-Investitionsfunktionen werden für zwei alternative Schätztechniken, GMM und eine direkte Biaskorrektur, verglichen. Es zeigt sich, dass sowohl das durchschnittliche als auch das marginale Q die Investitionen in signifikantem Ausmaß beeinflussen. Die Analyse für Größenklassen zeigt, dass im wesentlichen kleinere Unternehmen in stärkerem Maße auf Q und in geringerem Maße auf zeitlich verzögerte Investitionen reagieren.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://econstor.eu/bitstream/10419/19580/1/200223dkp.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Deutsche Bundesbank, Research Centre in its series Discussion Paper Series 1: Economic Studies with number 2002,23.

    as in new window
    Length:
    Date of creation: 2002
    Date of revision:
    Handle: RePEc:zbw:bubdp1:4188

    Contact details of provider:
    Postal: Postfach 10 06 02, 60006 Frankfurt
    Phone: 0 69 / 95 66 - 34 55
    Fax: 0 69 / 95 66 30 77
    Email:
    Web page: http://www.bundesbank.de/
    More information through EDIRC

    Related research

    Keywords: investment; Q; capital stock; replacement costs; VAR; dynamic panel data;

    Find related papers by JEL classification:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:zbw:bubdp1:4188. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.