Advanced Search
MyIDEAS: Login

Portfolio Selection with Probabilistic Utility, Bayesian Statistics, and Markov Chain Monte Carlo

Contents:

Author Info

  • Pietro Rossi

    (ENEA-HPCN)

  • Massimo Tavoni

    (Prometeia S.r.l.)

  • Flavio Cocco

    (Prometeia S.r.l.)

  • Robert Marschinski

    (Institute for Physics, Potsdam University)

Abstract

We propose a novel portfolio selection approach that manages to ease some of the problems that characterise standard expected utility maximisation. The optimal portfolio is no longer defined as the extremum of a suitably chosen utility function: the latter, instead, is reinterpreted as the logarithm of a probability distribution for optimal portfolios and the selected portfolio is defined as the expected value with respect to this distribution. A further theoretical aspect is the adoption of a Bayesian inference framework. We find that this approach has several attractive features, when comparing it to the standard maximisation of expected utility. We remove the over-pronounced sensitivity on external parameters that plague optimisation procedures and obtain a natural and self consistent way to account for uncertainty in knowledge and for personal views. We test the proposed method against traditional expected utility maximisation, using artificial data to simulate finite-sample behaviour, and find superior performance of our procedure. All numerical integrals are carried out by using Markov Chain Monte Carlo, where the chains are generated by an adapted version of Hybrid Monte Carlo. We present numerical results for a portfolio of eight assets using historical time series running from January 1988 to January 2002.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://128.118.178.162/eps/fin/papers/0211/0211003.pdf
Download Restriction: no

Bibliographic Info

Paper provided by EconWPA in its series Finance with number 0211003.

as in new window
Length: 27 pages
Date of creation: 19 Nov 2002
Date of revision: 28 Nov 2002
Handle: RePEc:wpa:wuwpfi:0211003

Note: Type of Document - Postscript; prepared on PC; to print on HP/PostScript/Franciscan monk; pages: 27 ; figures: within article. 27 pages, Postscript, figures included
Contact details of provider:
Web page: http://128.118.178.162

Related research

Keywords: Bayesian Statistics; Estimation Risk; Finite Sample; Markov Chain Monte Carlo; Portfolio Selection;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0211003. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.