IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/95-02-013.html
   My bibliography  Save this paper

Determination of Eukaryotic Protein Coding Regions Using Neural Networks and Information Theory

Author

Listed:
  • Robert Farber
  • Alan Lapedes
  • Karl Sirotkin

Abstract

Our previous work applied neural network techniques to the problem of discriminating open reading frame (ORF) sequences taken from introns versus exons. The method counted the codon frequencies in an ORF of a specified length, and then used this codon frequency representation of DNA fragments to train a neural net (essentially a Perceptron with a sigmoidal, or ``soft step function,'' output) to perform this discrimination. After training, the network was then applied to a disjoint ``predict'' set of data to assess accuracy. The resulting accuracy in our previous work was 98.4%, exceeding accuracies reported in the literature at that time for other algorithms. Here, we report even higher accuracies stemming from calculations of mutual information (a correlation measure) of spatially separated codons in exons, and in introns. Significant mutual information exists in exons, but not in introns, between adjacent codons. This suggests that dicodon frequencies of adjacent codons are important for intron/exon discrimination. We report that accuracies obtained using a neural net trained on the frequency of dicodons is significantly higher at smaller fragment lengths than even our original results using codon frequencies, which were already higher than simple statistical methods that also used codon frequencies. We also report accuracies obtained from including codon and dicodon statistics in all six reading frames, i.e. the three frames on the original and complement strand. Inclusion of six-frame statistics increases the accuracy still further. We also compare these neural net results to a Bayesian statistical prediction method that assumes independent codon frequencies in each position. The performance of the Bayesian scheme is poorer than any of the neural based schemes, however many methods reported in the literature either explicitly, or implicitly, use this method. Specifically, Bayesian prediction schemes based on codon frequencies achieve 90.9% accuracy on90 codon ORFs, while our best neural net scheme reaches 99.4% accuracy on 60 codon ORFs. ``Accuracy'' is defined as the average of the exon and intron sensitivities. Achievement of sufficiently high accuracies on short fragment lengths can be useful in providing a computational means of finding coding regions in unannotated DNA sequences such as those arising from the mega-base sequencing efforts of the Human Genome Project. We caution that the high accuracies reported here do not represent a complete solution to the problem of identifying exons in ``raw'' base sequences. The accuracies are considerably lower from exons of small length, although still higher than accuracies reported in the literature for other methods. Short exon lengths are not uncommon. A complete solution to the problem may need a combination of methods including accurate, computational methods of identifying splice sites.

Suggested Citation

  • Robert Farber & Alan Lapedes & Karl Sirotkin, 1995. "Determination of Eukaryotic Protein Coding Regions Using Neural Networks and Information Theory," Working Papers 95-02-013, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:95-02-013
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:95-02-013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/epstfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.