Advanced Search
MyIDEAS: Login

Optimal Investment Strategies under Stochastic Volatility - Estimation and Applications

Contents:

Author Info

Abstract

This paper studies the impact of stochastic volatility (SV) on optimal investment decisions. We consider three different SV models: an extended Stein/Stein model, the Heston Model and an extended Heston Model with a constant elasticity variance (CEV) process and derive the the long-term optimal investment strategies under each of these processes. Since volatility is not a directly observable quantity, extended Kalman filter techniques are adopted to deal with this partial information problem. Optimal investment strategies based on the CEV volatility model are obtained by adopting the Backward Markov Chain approximation method since analytical solutions are no longer available. We find in the empirical investigation that the Heston model is favored as a more parsimonious model compared with the other two models. All three investment strategies based on the three SV models contain a positive intertemporal hedging term in addition to the static mean-variance portfolio. However, in their details the three investment strategies differ from each other. We also ?nd that the investment strategies are sensitive to the CEV parameter.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.business.uts.edu.au/qfrc/research/research_papers/rp276.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Quantitative Finance Research Centre, University of Technology, Sydney in its series Research Paper Series with number 276.

as in new window
Length: 24
Date of creation: 01 May 2010
Date of revision:
Handle: RePEc:uts:rpaper:276

Contact details of provider:
Postal: PO Box 123, Broadway, NSW 2007, Australia
Phone: +61 2 9514 7777
Fax: +61 2 9514 7711
Web page: http://www.qfrc.uts.edu.au/
More information through EDIRC

Related research

Keywords: asset allocation; stochastic volatility; partial information problem; extended Kalman ?lter; the Heston model; CEV process;

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:276. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.