IDEAS home Printed from https://ideas.repec.org/p/ulb/ulbeco/2013-230790.html
   My bibliography  Save this paper

Multivariate analysis of a fine-scale breeding bird atlas using a geographical information system and partial canonical correspondence analysis: environmental and spatial effects

Author

Listed:
  • Nicolas Titeux
  • Marc Dufrène
  • Jean-Paul Jacob
  • Marc Paquay
  • Pierre Defourny

Abstract

Aim: To assess the relative roles of environment and space in driving bird species distribution and to identify relevant drivers of bird assemblage composition, in the case of a fine-scale bird atlas data set. Location: The study was carried out in southern Belgium using grid cells of 1 x 1 km, based on the distribution maps of the Oiseaux nicheurs de Famenne: Atlas de Lesse et Lomme which contains abundance for 103 bird species. Methods: Species found in 90% of the atlas cells were omitted from the bird data set for the analysis. Each cell was characterized by 59 landscape metrics, quantifying its composition and spatial patterns, using a Geographical Information System. Partial canonical correspondence analysis was used to partition the variance of bird species matrix into independent components: (a) 'pure' environmental variation, (b) spatially-structured environmental variation, (c) 'pure' spatial variation and (d) unexplained, non-spatial variation. Results: The variance partitioning method shows that the selected landscape metrics explain 27.5% of the variation, whilst 'pure' spatial and spatially-structured environmental variables explain only a weak percentage of the variation in the bird species matrix (2.5% and 4%, respectively). Avian community composition is primarily related to the degree of urbanization and the amount and composition of forested and open areas. These variables explain more than half of the variation for three species and over one-third of the variation for 12 species. Main conclusions: The results seem to indicate that the majority of explained variation in species assemblages is attributable to local environmental factors. At such a fine spatial resolution, however, the method does not seem to be appropriated for detecting and extracting the spatial variation of assemblages. Consequently, the large amount of unexplained variation is probably because of missing spatial structures and 'noise' in species abundance data. Furthermore, it is possible that other relevant environmental factors, that were not taken into account in this study and which may operate at different spatial scales, can drive bird assemblage structure. As a large proportion of ecological variation can be shared by environment and space, the applied partitioning method was found to be useful when analysing multispecific atlas data, but it needs improvement to factor out all-scale spatial components of this variation (the source of 'false correlation') and to bring out the 'pure' environmental variation for ecological interpretation.

Suggested Citation

  • Nicolas Titeux & Marc Dufrène & Jean-Paul Jacob & Marc Paquay & Pierre Defourny, 2004. "Multivariate analysis of a fine-scale breeding bird atlas using a geographical information system and partial canonical correspondence analysis: environmental and spatial effects," ULB Institutional Repository 2013/230790, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:ulb:ulbeco:2013/230790
    Note: FLWIN
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miller, Jennifer & Franklin, Janet & Aspinall, Richard, 2007. "Incorporating spatial dependence in predictive vegetation models," Ecological Modelling, Elsevier, vol. 202(3), pages 225-242.
    2. Vassilis Aschonitis & Christos G. Karydas & Miltos Iatrou & Spiros Mourelatos & Irini Metaxa & Panagiotis Tziachris & George Iatrou, 2019. "An Integrated Approach to Assessing the Soil Quality and Nutritional Status of Large and Long-Term Cultivated Rice Agro-Ecosystems," Agriculture, MDPI, vol. 9(4), pages 1-25, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulb:ulbeco:2013/230790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/ecsulbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.