IDEAS home Printed from https://ideas.repec.org/p/trr/wpaper/201912.html
   My bibliography  Save this paper

Estimation of Regional Transition Probabilities for Spatial Dynamic Microsimulations from Survey Data Lacking in Regional Detail

Author

Listed:
  • Jan Pablo Burgard
  • Joscha Krause
  • Simon Schmaus

Abstract

Spatial dynamic microsimulations allow for the multivariate analysis of complex socio- economic systems with geographic segmentation. For this, a synthetic replica of the system as base population is stochastically projected into future periods. Thereby, the projection is based on micro-level transition probabilities. They need to accurately represent the characteristic dynamics of the system to allow for reliable simulation outcomes. In practice, transition probabilities are unknown and must be estimated from suitable survey data. This can be challenging when the characteristic dynamics vary locally. Survey data often lacks in regional detail due to confidentiality restrictions and limited sampling resources. In that case, transition probability estimates may misrepresent local dynamics as a result of insufficient local observations and coverage problems. The simulation process then fails to provide an authentic evolution. We present two transition probability estimation techniques that account for regional heterogeneity when the survey data lacks in regional detail. Using methods of constrained optimization and ex-post alignment, we show that local micro level transition dynamics can be accurately recovered from aggregated regional benchmarks. The techniques are compared in theory and subsequently tested in a simulation study.

Suggested Citation

  • Jan Pablo Burgard & Joscha Krause & Simon Schmaus, 2019. "Estimation of Regional Transition Probabilities for Spatial Dynamic Microsimulations from Survey Data Lacking in Regional Detail," Research Papers in Economics 2019-12, University of Trier, Department of Economics.
  • Handle: RePEc:trr:wpaper:201912
    as

    Download full text from publisher

    File URL: http://www.uni-trier.de/fileadmin/fb4/prof/VWL/EWF/Research_Papers/2019-12.pdf
    File Function: First version, 2019
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anders Klevmarken, 2022. "Microsimulation for Public Policy. Experiences from the Swedish Model SESIM," International Journal of Microsimulation, International Microsimulation Association, vol. 15(1), pages 153-185.
    2. Jinjing Li & Cathal O'Donoghue, 2014. "Evaluating Binary Alignment Methods in Microsimulation Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(1), pages 1-15.
    3. Robert Tanton, 2018. "Spatial Microsimulation: Developments and Potential Future Directions," International Journal of Microsimulation, International Microsimulation Association, vol. 11(1), pages 143-161.
    4. Nilanjan Chatterjee & Yi-Hau Chen & Paige Maas & Raymond J. Carroll, 2016. "Constrained Maximum Likelihood Estimation for Model Calibration Using Summary-Level Information From External Big Data Sources," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 107-117, March.
    5. Jinjing Li & Cathal O'Donoghue, 2013. "A survey of dynamic microsimulation models: uses, model structure and methodology," International Journal of Microsimulation, International Microsimulation Association, vol. 6(2), pages 3-55.
    6. Peichl, Andreas & Schneider, Hilmar & Siegloch, Sebastian, 2010. "Documentation IZA?MOD: The IZA Policy SImulation MODel," IZA Discussion Papers 4865, Institute of Labor Economics (IZA).
    7. Azizur Rahman & Ann Harding & Robert Tanton & Shuangzhe Liu, 2010. "Methodological Issues in Spatial Microsimulation Modelling for Small Area Estimation," International Journal of Microsimulation, International Microsimulation Association, vol. 3(2), pages 3-22.
    8. Cathal O'Donoghue & John Lennon & Stephen Hynes, 2009. "The Life-Cycle Income Analysis Model (LIAM): a study of a flexible dynamic microsimulation modelling computing framework," International Journal of Microsimulation, International Microsimulation Association, vol. 2(1), pages 16-31.
    9. Holly Sutherland & Francesco Figari, 2013. "EUROMOD: the European Union tax-benefit microsimulation model," International Journal of Microsimulation, International Microsimulation Association, vol. 1(6), pages 4-26.
    10. Peter Stephensen, 2016. "Logit Scaling: A General Method for Alignment in Microsimulation models," International Journal of Microsimulation, International Microsimulation Association, vol. 9(3), pages 89-102.
    11. Robert Tanton, 2014. "A Review of Spatial Microsimulation Methods," International Journal of Microsimulation, International Microsimulation Association, vol. 7(1), pages 4-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burgard Jan Pablo & Dieckmann Hanna & Krause Joscha & Merkle Hariolf & Münnich Ralf & Neufang Kristina M. & Schmaus Simon, 2020. "A generic business process model for conducting microsimulation studies," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 191-211, August.
    2. Burgard, Jan Pablo & Krause, Joscha & Schmaus, Simon, 2021. "Estimation of regional transition probabilities for spatial dynamic microsimulations from survey data lacking in regional detail," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    3. Jan Pablo Burgard & Hanna Dieckmann & Joscha Krause & Hariolf Merkle & Ralf Münnich & Kristina M. Neufang & Simon Schmaus, 2020. "A generic business process model for conducting microsimulation studies," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 191-211, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burgard, Jan Pablo & Krause, Joscha & Schmaus, Simon, 2021. "Estimation of regional transition probabilities for spatial dynamic microsimulations from survey data lacking in regional detail," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    2. Jan Pablo Burgard & Hanna Dieckmann & Joscha Krause & Hariolf Merkle & Ralf Münnich & Kristina M. Neufang & Simon Schmaus, 2020. "A generic business process model for conducting microsimulation studies," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 191-211, August.
    3. Denisa Sologon, 2014. "Book review: New Pathways to Microsimulation," International Journal of Microsimulation, International Microsimulation Association, vol. 7(3), pages 80-86.
    4. Sebastian Dräger & Johannes Kopp & Ralf Münnich & Simon Schmaus, 2022. "Die zukünftige Entwicklung der Grundschulversorgung im Kontext ausgewählter Wanderungsszenarien [The future development of primary school demand in the context of selected migration scenarios]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 16(1), pages 51-77, March.
    5. Richiardi, Matteo & Bronka, Patryk & van de Ven, Justin, 2023. "Back to the future: Agent-based modelling and dynamic microsimulation," Centre for Microsimulation and Policy Analysis Working Paper Series CEMPA8/23, Centre for Microsimulation and Policy Analysis at the Institute for Social and Economic Research.
    6. Jinjing Li & Cathal O'Donoghue, 2013. "A survey of dynamic microsimulation models: uses, model structure and methodology," International Journal of Microsimulation, International Microsimulation Association, vol. 6(2), pages 3-55.
    7. Burgard Jan Pablo & Dieckmann Hanna & Krause Joscha & Merkle Hariolf & Münnich Ralf & Neufang Kristina M. & Schmaus Simon, 2020. "A generic business process model for conducting microsimulation studies," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 191-211, August.
    8. Islam, Nizamul & Flood, Lennart, 2015. "A Tax Benefit Model for Policy Evaluation in Luxembourg: LuxTaxBen," IZA Discussion Papers 9152, Institute of Labor Economics (IZA).
    9. Johannes Geyer & Salmai Qari & Hermann Buslei & Peter Haan, 2021. "DySiMo Dokumentation: Version 1.0," Data Documentation 101, DIW Berlin, German Institute for Economic Research.
    10. Sebastian Dräger & Johannes Kopp & Ralf Münnich & Simon Schmaus, 2021. "Analyse der Grundschulversorgung in Trier mit Hilfe kleinräumiger Mikrosimulationsmodelle," Research Papers in Economics 2021-01, University of Trier, Department of Economics.
    11. Matteo Richiardi & Ross E. Richardson, 2017. "JAS-mine: A new platform for microsimulation and agent-based modelling," International Journal of Microsimulation, International Microsimulation Association, vol. 10(1), pages 106-134.
    12. Didier Blanchet & Cyrille Hagneré & François Legendre & Florence Thibault, 2015. "Introduction. Microsimulations statique et dynamique appliquées aux politiques fiscales et sociales : modèles et méthodes," Économie et Statistique, Programme National Persée, vol. 481(1), pages 5-30.
    13. repec:ijm:journl:v109:y:2017:i:1:p:167-200 is not listed on IDEAS
    14. Magalasi, Chimwemwe, 2021. "The short-term distributional impact of COVID-19 in Malawi," EUROMOD Working Papers EM7/21, EUROMOD at the Institute for Social and Economic Research.
    15. Denisa M. Sologon & Cathal O’Donoghue & Iryna Kyzyma & Jinjing Li & Jules Linden & Raymond Wagener, 2022. "The COVID-19 resilience of a continental welfare regime - nowcasting the distributional impact of the crisis," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(4), pages 777-809, December.
    16. H. Xavier Jara & Lourdes Montesdeoca & Iva Tasseva, 2022. "The Role of Automatic Stabilizers and Emergency Tax–Benefit Policies During the COVID-19 Pandemic: Evidence from Ecuador," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 34(6), pages 2787-2809, December.
    17. Li, Jinjing & O'Donoghue, Cathal, 2012. "A methodological survey of dynamic microsimulation models," MERIT Working Papers 2012-002, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    18. Richiardi, Matteo & Bronka, Patryk & van de Ven, Justin & Kopasker, Daniel & Vittal Katikireddi, Srinivasa, 2023. "SimPaths: an open-source microsimulation model for life course analysis," Centre for Microsimulation and Policy Analysis Working Paper Series CEMPA6/23, Centre for Microsimulation and Policy Analysis at the Institute for Social and Economic Research.
    19. Ian Philips & Graham Clarke & David Watling, 2017. "A Fine Grained Hybrid Spatial Microsimulation Technique for Generating Detailed Synthetic Individuals from Multiple Data Sources: An Application To Walking And Cycling," International Journal of Microsimulation, International Microsimulation Association, vol. 10(1), pages 167-200.
    20. Ross Richardson & Lia Pacelli & Ambra Poggi & Matteo Richiardi, 2018. "Female Labour Force Projections Using Microsimulation for Six EU Countries," International Journal of Microsimulation, International Microsimulation Association, vol. 11(2), pages 5-51.
    21. Joachim Merz & Lars Rusch, 2015. "MICSIM-4j - A General Microsimulation Model User Guide (Version 1.1)," FFB-Discussionpaper 100, Research Institute on Professions (Forschungsinstitut Freie Berufe (FFB)), LEUPHANA University Lüneburg.

    More about this item

    Keywords

    Constrained Maximum Likelihood; Logit Scaling; Spatiotemporal Modelling; Regional Benchmark;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:trr:wpaper:201912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Matthias Neuenkirch (email available below). General contact details of provider: https://edirc.repec.org/data/petride.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.