Advanced Search
MyIDEAS: Login to save this paper or follow this series

Nonparametric Inferences on Conditional Quantile Processes


Author Info

  • Chuan Goh


This paper is concerned with tests of restrictions on the sample path of conditional quantile processes. These tests are tantamount to assessments of lack of fit for models of conditional quantile functions or more generally as tests of how certain covariates affect the distribution of an outcome variable of interest. This paper extends tests of the generalized likelihood ratio (GLR) type as introduced by Fan, Zhang and Zhang (2001) to nonparametric inference problems regarding conditional quantile processes. As such, the tests proposed here present viable alternatives to existing methods based on the Khmaladze (1981, 1988) martingale transformation. The range of inference problems that may be addressed by the methods proposed here is wide, and includes tests of nonparametric nulls against nonparametric alternatives as well as tests of parametric specifications against nonparametric alternatives. In particular, it is shown that a class of GLR statistics based on nonparametric additive quantile regressions have pivotal asymptotic distributions given by the suprema of squares of Bessel processes, as in Hawkins (1987) and Andrews (1993). The tests proposed here are also shown to be asymptotically rate-optimal for nonparametric hypothesis testing according to the formulations of Ingster (1993) and of Spokoiny (1996).

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
File Function: Main Text
Download Restriction: no

Bibliographic Info

Paper provided by University of Toronto, Department of Economics in its series Working Papers with number tecipa-277.

as in new window
Length: 33 pages
Date of creation: 15 Jan 2007
Date of revision:
Handle: RePEc:tor:tecipa:tecipa-277

Contact details of provider:
Postal: 150 St. George Street, Toronto, Ontario
Phone: (416) 978-5283

Related research

Keywords: quantile regression; nonparametric inference; minimax rate; additive models; local polynomials; generalized likelihood ratio;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:


No references listed on IDEAS
You can help add them by filling out this form.



This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:tor:tecipa:tecipa-277. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePEc Maintainer).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.