IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20010012.html
   My bibliography  Save this paper

Simulating Tail Probabilities in GI/GI.1 Queues and Insurance Risk Processes with Subexponentail Distributions

Author

Listed:
  • Nam Kyoo Boots

    (Vrije Universiteit Amsterdam)

  • Perwez Shahabuddin

    (Columbia University)

Abstract

This paper deals with estimating small tail probabilities of thesteady-state waiting time in a GI/GI/1 queue withheavy-tailed (subexponential) service times. The problem ofestimating infinite horizon ruin probabilities in insurancerisk processes with heavy-tailed claims can be transformed into thesame framework. It is well-known that naivesimulation is ineffective for estimating small probabilities andspecial fast simulation techniques like importancesampling, multilevel splitting, etc., have to be used. Though thereexists a vast amount of literature on the rare eventsimulation of queuing systems and networks with light-taileddistributions, previous fast simulation techniques forqueues with subexponential service times have been confined to theM/GI/1 queue. The general approach is to use thePollaczek-Khintchine transformation to convert the problem into thatof estimating the tail distribution of a geometricsum of independent subexponential random variables. However, no suchuseful transformation exists when one goesfrom Poisson arrivals to general interarrival-time distributions. Wedescribe and evaluate an approach that is based ondirectly simulating the random walk associated with the waiting-timeprocess of the GI/GI/1 queue, using a change ofmeasure called delayed subexponential twisting -an importancesampling idea recently developed and found useful inthe context of M/GI/1 heavy-tailed simulations.

Suggested Citation

  • Nam Kyoo Boots & Perwez Shahabuddin, 2001. "Simulating Tail Probabilities in GI/GI.1 Queues and Insurance Risk Processes with Subexponentail Distributions," Tinbergen Institute Discussion Papers 01-012/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20010012
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/01012.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Perwez Shahabuddin, 1994. "Importance Sampling for the Simulation of Highly Reliable Markovian Systems," Management Science, INFORMS, vol. 40(3), pages 333-352, March.
    2. Asmussen, Søren & Klüppelberg, Claudia, 1996. "Large deviations results for subexponential tails, with applications to insurance risk," Stochastic Processes and their Applications, Elsevier, vol. 64(1), pages 103-125, November.
    3. Peter W. Glynn & Donald L. Iglehart, 1989. "Importance Sampling for Stochastic Simulations," Management Science, INFORMS, vol. 35(11), pages 1367-1392, November.
    4. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin & Tim Zajic, 1999. "Multilevel Splitting for Estimating Rare Event Probabilities," Operations Research, INFORMS, vol. 47(4), pages 585-600, August.
    5. Asmussen, S. & Binswanger, K., 1997. "Simulation of Ruin Probabilities for Subexponential Claims," ASTIN Bulletin, Cambridge University Press, vol. 27(2), pages 297-318, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaynar, Bahar & Ridder, Ad, 2010. "The cross-entropy method with patching for rare-event simulation of large Markov chains," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1380-1397, December.
    2. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    3. Helton, J.C. & Hansen, C.W. & Sallaberry, C.J., 2014. "Conceptual structure and computational organization of the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 223-248.
    4. Pierre L’Ecuyer & Bruno Tuffin, 2011. "Approximating zero-variance importance sampling in a reliability setting," Annals of Operations Research, Springer, vol. 189(1), pages 277-297, September.
    5. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 55-65.
    6. Sandeep Juneja & Perwez Shahabuddin, 2001. "Fast Simulation of Markov Chains with Small Transition Probabilities," Management Science, INFORMS, vol. 47(4), pages 547-562, April.
    7. Tito Homem-de-Mello, 2007. "A Study on the Cross-Entropy Method for Rare-Event Probability Estimation," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 381-394, August.
    8. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2006. "Probability of loss of assured safety in temperature dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 91(3), pages 320-348.
    9. Barry L. Nelson, 2004. "50th Anniversary Article: Stochastic Simulation Research in Management Science," Management Science, INFORMS, vol. 50(7), pages 855-868, July.
    10. Søren Asmussen & Reuven Y. Rubinstein, 1999. "Sensitivity Analysis of Insurance Risk Models via Simulation," Management Science, INFORMS, vol. 45(8), pages 1125-1141, August.
    11. Kuruganti, I. & Strickland, S., 1997. "Optimal importance sampling for Markovian systems with applications to tandem queues," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 44(1), pages 61-79.
    12. Hernan P. Awad & Peter W. Glynn & Reuven Y. Rubinstein, 2013. "Zero-Variance Importance Sampling Estimators for Markov Process Expectations," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 358-388, May.
    13. Paul Glasserman & Jeremy Staum, 2001. "Conditioning on One-Step Survival for Barrier Option Simulations," Operations Research, INFORMS, vol. 49(6), pages 923-937, December.
    14. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," LSE Research Online Documents on Economics 64051, London School of Economics and Political Science, LSE Library.
    15. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2007. "Verification test problems for the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1374-1387.
    16. Helton, Jon C. & Sallaberry, Cedric J., 2009. "Computational implementation of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nev," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 699-721.
    17. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    18. Philippe Jehiel & Jakub Steiner, 2020. "Selective Sampling with Information-Storage Constraints [On interim rationality, belief formation and learning in decision problems with bounded memory]," The Economic Journal, Royal Economic Society, vol. 130(630), pages 1753-1781.
    19. Albrecher Hansjörg & Kantor Josef, 2002. "Simulation of ruin probabilities for risk processes of Markovian type," Monte Carlo Methods and Applications, De Gruyter, vol. 8(2), pages 111-128, December.
    20. Serguei Foss & Andrew Richards, 2010. "On Sums of Conditionally Independent Subexponential Random Variables," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 102-119, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20010012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.