Advanced Search
MyIDEAS: Login

Including Social Nash Equilibria in Abstract Economies

Contents:

Author Info

Abstract

We consider quasi-variational problems (variational problems having constraint sets depending on their own solutions) which appear in concrete economic models such as social and economic networks, financial derivative models, transportation network congestion and traffic equilibrium. First, using an extension of the classical Minty lemma, we show that new upper stability results can be obtained for parametric quasi-variational and linearized quasi-variational problems, while lower stability, which plays a fundamental role in the investigation of hierarchical problems, cannot be achieved in general, even on very restrictive conditions. Then, regularized problems are considered allowing to introduce approximate solutions for the above problems and to investigate their lower and upper stability properties. We stress that the class of quasi-variational problems include social Nash equilibrium problems in abstract economies, so results about approximate Nash equilibria can be easily deduced.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.csef.it/WP/wp268.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy in its series CSEF Working Papers with number 268.

as in new window
Length:
Date of creation: 11 Dec 2010
Date of revision: 07 Feb 2012
Handle: RePEc:sef:csefwp:268

Contact details of provider:
Postal: I-80126 Napoli
Phone: +39 081 - 675372
Fax: +39 081 - 675372
Email:
Web page: http://www.csef.it/
More information through EDIRC

Related research

Keywords: quasi-variational; social Nash equilibria; approximate solution; closed map; lower semicontinuous map; upper stability; lower stability;

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:sef:csefwp:268. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lia Ambrosio).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.