Advanced Search
MyIDEAS: Login to save this paper or follow this series

Duopolistic competition in an electricity markets with heterogeneous cost functions

Contents:

Author Info

  • Eric Guerci

    (DIBE - University of Genoa)

  • Stefano Ivaldi

    (DIBE - University of Genoa)

  • Marco Raberto

    (DIBE - University of Genoa)

  • Silvano Cincotti

    (DIBE - University of Genoa)

Abstract

In this paper the compelling issue of efficiency of electricity markets has been studied by means of an artificial power exchange based on the agent-based approach. In particular, two common market-clearing rules, i.e., discriminatory and uniform, have been compared with respect to efficiency outcomes. Computational experiments have been performed, where two heterogeneous competing sellers face an inelastic and constant demand within a repeated auction framework. Each seller is endowed with a limited production capacity, a specific cost function (linear and non linear) and learning capabilities. The seller's decision-making process has been modeled according to different reinforcement learning algorithms, namely, Marimon and McGrattan and Q-learning algorithms, which can be implemented under the same behavioral hypothesis, i.e., game-structure independence. Two different levels of demand are considered. A high-demand situation where overall demand is greater than the capacity of the greatest producer, and a low-demand situation where overall demand is less than the capacity of the smallest seller. Results are presented according to the occurrence of Nash equilibria and Pareto optima in the long-run behavior of the learning processes and to the profits achieved by the sellers. Computational experiments lead to the conclusions that the discriminatory auction mechanism tends to increase competitive behavior

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2006 with number 412.

as in new window
Length:
Date of creation: 04 Jul 2006
Date of revision:
Handle: RePEc:sce:scecfa:412

Contact details of provider:
Email:
Web page: http://comp-econ.org/
More information through EDIRC

Related research

Keywords: Agent-based simulation; power-exchange market; market power; reinforcement learning;

Find related papers by JEL classification:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:412. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.