Advanced Search
MyIDEAS: Login

Robustness of computer algorithms to simulate optimal experimentation problems

Contents:

Author Info

  • Thomas Cosimano

    ()
    (University of Notre Dame)

  • Michael Gapen

    (International Monetary Fund)

  • David Kendrick

    (University of Texas)

  • Volker Wieland

    (Goethe University of Frankfurt)

Abstract

Three methods have been developed by the authors for solving optimal experimentation problems. David Kendrick (1981, 2002, Ch.10) uses quadratic approximation of the value function and linear approximation of the equation of motion to simulate general optimal experimentation (active learning) problems. Beck and Volker Wieland (2002) use dynamic programming methods to develop an algorithm for optimal experimentation problems. Cosimano (2003) and Cosimano and Gapen (2005) use the Perturbation method to develop an algorithm for solving optimal experimentation problems. The perturbation is in the neighborhood of the augmented linear regulator problems of Hansen and Sargent (2004). In this paper we take an example from Beck and Wieland which fits into the setup of all three algorithms. Using this example we examine the cost and benefits of the various algorithms for solving optimal experimentation problems.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://repec.org/sce2006/up.28241.1137610390.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2006 with number 32.

as in new window
Length:
Date of creation: 04 Jul 2006
Date of revision:
Handle: RePEc:sce:scecfa:32

Contact details of provider:
Email:
Web page: http://comp-econ.org/
More information through EDIRC

Related research

Keywords:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:32. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.