Advanced Search
MyIDEAS: Login to save this paper or follow this series

Alpha-Stable Consistent Model Specification Tests for Heavy-Tailed Neural Networks Environments

Contents:

Author Info

  • Jonathan Hill

    ()
    (University of Colorado)

Abstract

This paper investigates applications of stable-law limiting theory to model specification tests in which non-linearities are sought in data that exhibit bounded maximal moments. Utilizing the stable-laws allows us for the first time to prove that consistent conditional moment tests (CM) of a functional form within neural network environments are not chi-squared in distribution. In addition, we prove that CM tests suffer a dramatic loss in power when moments greater than two are infinite. Furthermore, we offer for the first time a set of computationally cheapest statistics that are stable-functionals of suitable moment conditions. The new statistics are suitable for all iid and serially dependent data processes and are directly applicable to neural network learning in financial time-series models. The stable-law statistics are invariant to moment condition failure, remain maximally powerful under mild conditions, and do not require a restrictive orthogonality condition under the null hypothesis. Simulation experiments indicate that CM tests are far more likely to predict non-linearity erroneously in data than true chi-squared distributions imply. Moreover, in comparison, for certain data environments, the new stable-law statistics demonstrate perfect power for all levels of moment condition failure.

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 1999 with number 1041.

as in new window
Length:
Date of creation: 01 Mar 1999
Date of revision:
Handle: RePEc:sce:scecf9:1041

Contact details of provider:
Postal: CEF99, Boston College, Department of Economics, Chestnut Hill MA 02467 USA
Fax: +1-617-552-2308
Web page: http://fmwww.bc.edu/CEF99/
More information through EDIRC

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:sce:scecf9:1041. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.