Advanced Search
MyIDEAS: Login to save this paper or follow this series

The Temptation of Emergence or: Don't Rush into Economic(al) Explanations

Contents:

Author Info

  • Norman Ehrentreich

Abstract

One of the pioneering stock market simulations, the Santa Fe Institute Artificial Stock Market (SFI-ASM), showed an influence of learning speed on the aggregate outcome. For slow learning rates, the neoclassical properties of a homogeneous rational expectations equilibrium (hree) could be confirmed. However, a complex regime with higher price volatility, GARCH-behavior, cross-correlation between price and trading volume, and significant levels of technical trading emerged for faster learning speeds. In Ehrentreich (200x) it was shown that these results are based on the specific design of the mutation operator which introduced an upward bias in the level of set trading bits in the classifier system. Since agents in a corrected version endogenously gave up the use of their classifier system, it was implied that it did not provide any profitable trading information. This is in contrast to the original SFI-ASM. Joshi, Parker, and Bedau (1998) found that agents with access to technical trading bits did significantly better with respect to wealth levels than those without. In their 2002 study they found that faster learning agents outperformed slow learning agents. A sensitivity analysis of wealth levels with both the original and the corrected mutation operator was able to replicate the Joshi, Parker, and Bedau results, however only for specific parameter settings. It was revealed that differences in wealth levels are a result of the size of the active rule set that an agent possesses. It was a peculiarity of design in the SFI-ASM that trading rules were not always logical. The more trading bits were set, the higher the fraction of illogical trading rules. For faster learning rates, the number of logical and thus potentially activated trading rules decreased significantly. This had an effect on the efficiency of the selection mechanisms (Select Best and Roulette Wheel) that were used to determine the rules on which agents acted upon. Contour plots show that the differences in wealth levels between two agent types, who differ in the size of the rule set and learning speeds, can be positive or negative, depending on the specific parameter combination. Any economic interpretation of differences in wealth levels are thus too hasty, since these differences are again a result of technicalities in the model, unless one is willing to interpret cognitive or economic substance into the working of the selection mechanisms. Unexpected results that are hard to explain on the basis of the constituting elements in a simulation model pose a general temptation to explain them as emergent behavior, yet they can still be a result of unsuspicious programming details. Since the two selection mechanisms are widely used in the agent-based community, the necessity of having a constant number of active strategies over the course of the simulation is demonstrated. Because of this, the above analysis could be of general interest to the agent-based simulation community.

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2005 with number 373.

as in new window
Length:
Date of creation: 11 Nov 2005
Date of revision:
Handle: RePEc:sce:scecf5:373

Contact details of provider:
Email:
Web page: http://comp-econ.org/
More information through EDIRC

Related research

Keywords: Emergence; Classifier Systems; Artificial Stock Markets;

Find related papers by JEL classification:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:373. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.