IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-17-22.html
   My bibliography  Save this paper

Costs and Benefits of Saving Unprofitable Generators: A Simulation Case Study for US Coal and Nuclear Power Plants

Author

Listed:
  • Shawhan, Daniel

    (Resources for the Future)

  • Picciano, Paul

    (Resources for the Future)

Abstract

In this paper, we use a detailed power sector model, E4ST, to project effects of preventing a set of unprofitable generators from retiring. We simulate the “Grid Resiliency Pricing Rule” proposed by the US Department of Energy in the fall of 2017, and several variations. In the proposed policy, eligible coal and nuclear generators would be guaranteed revenues sufficient to make them profitable. Our analysis is an examination of that potential policy and an illustrative case study for similar national, regional, or state policies in the United States or elsewhere. The results highlight the importance of estimating environmental net benefits, as they dominate the cost–benefit analysis of all of the policy variations considered. In the simulation results, the total subsidy amount required to guarantee profits for coal and nuclear generators in 2025 is $7.6 billion. If the policy is in effect from 2020 through 2045, it prevents the retirement of approximately 25 GW of coal-fueled capacity, delays the retirement of 20 GW of nuclear capacity, causes 27,000 premature deaths in the United States, and has an estimated total net cost of $263 billion during those 25 years. Of that, $217 billion is environmental damages and $45 billion is nonenvironmental net costs. We find that the policy’s net non-environmental cost for electricity end-users is $72 billion and its net benefit for generation owners is $28 billion. In an alternative scenario, we find that guaranteeing only recovery of costs necessary for continued operation, instead of guaranteeing profits, shifts costs from end-users to generators enough to nullify the policy’s effect on electric bills and make it detrimental to generator profits, but has little effect on the other outcomes. Preventing the retirement of just nuclear capacity is the only simulated policy that produces positive net benefits. Our analysis assumes that the policies do not otherwise affect the efficiency of the electricity markets, and it does not estimate effects on reliability or resilience, but it could be considered in combination with analyses of such effects.

Suggested Citation

  • Shawhan, Daniel & Picciano, Paul, 2017. "Costs and Benefits of Saving Unprofitable Generators: A Simulation Case Study for US Coal and Nuclear Power Plants," RFF Working Paper Series 17-22, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-17-22
    as

    Download full text from publisher

    File URL: https://www.rff.org/documents/430/RFF-WP-17-22.pdf
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-17-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.