IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/79911.html
   My bibliography  Save this paper

Smoothing Algorithms by Constrained Maximum Likelihood

Author

Listed:
  • Yang, Bill Huajian

Abstract

In the process of loan pricing, stress testing, capital allocation, modeling of PD term structure, and IFRS9 expected credit loss estimation, it is widely expected that higher risk grades carry higher default risks, and that an entity is more likely to migrate to a closer non-default rating than a farther away non-default rating. In practice, sample estimates for rating level default rate or rating migration probability do not always respect this monotonicity rule, and hence the need for smoothing approaches. Regression and interpolation techniques are widely used for this purpose. A common issue with these approaches is that the risk scale for the estimates is not fully justified, leading to a possible bias in credit loss estimates. In this paper, we propose smoothing algorithms for rating level PD and rating migration probability. The smoothed estimates obtained by these approaches are optimal in the sense of constrained maximum likelihood, with a fair risk scale determined by constrained maximum likelihood, leading to more robust credit loss estimation. The proposed algorithms can be easily implemented by a modeller using, for example, the SAS procedure PROC NLMIXED. The approaches proposed in this paper will provide an effective and useful smoothing tool for practitioners in the field of risk modeling.

Suggested Citation

  • Yang, Bill Huajian, 2017. "Smoothing Algorithms by Constrained Maximum Likelihood," MPRA Paper 79911, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:79911
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/79911/1/MPRA_paper_79911.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Bill Huajian & Du, Zunwei, 2016. "Rating Transition Probability Models and CCAR Stress Testing: Methodologies and implementations," MPRA Paper 76270, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Bill Huajian, 2017. "Forward Ordinal Probability Models for Point-in-Time Probability of Default Term Structure," MPRA Paper 79934, University Library of Munich, Germany.
    2. Yang, Bill Huajian, 2017. "Point-in-time PD term structure models for multi-period scenario loss projection: Methodologies and implementations for IFRS 9 ECL and CCAR stress testing," MPRA Paper 76271, University Library of Munich, Germany.
    3. Yang, Bill Huajian, 2022. "Modeling Path-Dependent State Transition by a Recurrent Neural Network," MPRA Paper 114188, University Library of Munich, Germany, revised 18 Jul 2022.

    More about this item

    Keywords

    Credit loss estimation; risk scale; constrained maximum likelihood; PD term structure; rating migration probability;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • E5 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit
    • G31 - Financial Economics - - Corporate Finance and Governance - - - Capital Budgeting; Fixed Investment and Inventory Studies
    • G38 - Financial Economics - - Corporate Finance and Governance - - - Government Policy and Regulation
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:79911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.