Advanced Search
MyIDEAS: Login

Least Squares Fitting of Chacón-Gielis Curves by the Particle Swarm Method of Optimization

Contents:

Author Info

  • Mishra, SK

Abstract

Ricardo Chacón generalized Johan Gielis's superformula by introducing elliptic functions in place of trigonometric functions. In this paper an attempt has been made to fit the Chacón-Gielis curves (modified by various functions) to simulated data by the least squares principle. Estimation has been done by the Particle Swarm (PS) methods of global optimization. The Repulsive Particle Swarm optimization algorithm has been used. It has been found that although the curve-fitting exercise may be satisfactory, a lack of uniqueness of Chacón-Gielis parameters to data (from which they are estimated) poses an insurmountable difficulty to interpretation of findings.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/466/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 466.

as in new window
Length:
Date of creation: 15 Jul 2006
Date of revision:
Handle: RePEc:pra:mprapa:466

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Least squares multimodal nonlinear curve-fitting; Ricardo Chacón; Jacobian Elliptic functions; Weierstrass ; Gielis super-formula; supershapes; Particle Swarm method; Repulsive Particle Swarm method of Global optimization; nonlinear programming; multiple sub-optima; global; local optima; fit; empirical; estimation; cellular automata; fractals;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Mishra, SK, 2006. "Performance of Differential Evolution and Particle Swarm Methods on Some Relatively Harder Multi-modal Benchmark Functions," MPRA Paper 1743, University Library of Munich, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:466. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.