Advanced Search
MyIDEAS: Login to save this paper or follow this series

A Theory of Continuum Economies with Independent Shocks and Matchings


Author Info

  • Karavaev, Andrei


Numerous economic models employ a continuum of negligible agents with a sequence of idiosyncratic shocks and random matchings. Several attempts have been made to build a rigorous mathematical justification for such models, but these attempts have left many questions unanswered. In this paper, we develop a discrete time framework in which the major, desirable properties of idiosyncratic shocks and random matchings hold. The agents live on a probability space, and the probability distribution for each agent is naturally replaced by the population distribution. The novelty of this approach is in the assumption of unknown identity. Each agent believes that initially he was randomly and uniformly placed on the agent space, i.e., the agent's identity (the exact location on the agent space) is unknown to the agent.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 17113.

as in new window
Date of creation: 15 Feb 2008
Date of revision: 02 Sep 2009
Handle: RePEc:pra:mprapa:17113

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page:
More information through EDIRC

Related research

Keywords: random matching; idiosyncratic shocks; the Law of Large Numbers; aggregate uncertainty; mixing;

Find related papers by JEL classification:


No references listed on IDEAS
You can help add them by filling out this form.



This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:17113. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.