Advanced Search
MyIDEAS: Login

Hierarchical equilibria of branching populations

Contents:

Author Info

  • D.A. Dawson

    ()
    (School of Mathematics and Statistics, Carleton University)

  • L.G. Gorostiza

    ()
    (Centro de Investigacion y de Estudios Avanzados)

  • A. Wakolbinger

    ()
    (Frankfurt am Main)

Registered author(s):

    Abstract

    The objective of this paper is the study of the equilibrium behavior of a population on the hierarchical group (Omega)N consisting of families of individuals undergoing critical branching random walk and in addition these families also develop according to a critical branching process. Strong transience of the random walk guarantees existence of an equilibrium for this two-level branching system. In the limit N -> (infinity symbol) (called the hierarchical mean field limit), the equilibrium aggregated populations in a nested sequence of balls (symbole)(N) of hierarchical radius (symbol) converge to a backward Markov chain on R+. This limiting Markov chain can be explicitly represented in terms of a cascade of subordinators which in turn makes possible a description of the genealogy of the population.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.repad.org/ca/on/lrsp/TRS389.pdf
    File Function: First version, 2000
    Download Restriction: no

    Bibliographic Info

    Paper provided by Département des sciences administratives, UQO in its series RePAd Working Paper Series with number lrsp-TRS389.

    as in new window
    Length: 62 pages
    Date of creation: 01 Jan 2000
    Date of revision:
    Handle: RePEc:pqs:wpaper:0162005

    Contact details of provider:
    Postal: Pavillon Lucien Brault, 101 rue Saint Jean-Bosco, Gatineau (Québec) J8Y 3G5
    Phone: (819) 595-3900
    Fax: (819) 773-1747
    Web page: http://www.repad.org/
    More information through EDIRC

    Related research

    Keywords: Multilevel branching; hierarchical mean-field limit; strong transience; genealogy.;

    Find related papers by JEL classification:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Durrett, R., 1978. "The genealogy of critical branching processes," Stochastic Processes and their Applications, Elsevier, vol. 8(1), pages 101-116, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:pqs:wpaper:0162005. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Calmes).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.