IDEAS home Printed from https://ideas.repec.org/p/oxf/wpaper/2013-w01.html
   My bibliography  Save this paper

Martingale unobserved component models

Author

Listed:
  • Neil Shephard

Abstract

I discuss models which allow the local level model, which rationalised exponentially weighted moving averages, to have a time-varying signal/noise ratio. I call this a martingale component model. This makes the rate of discounting of data local. I show how to handle such models effectively using an auxiliary particle filter which deploys M Kalman filters run in parallel competing against one another. Here one thinks of M as being 1,000 or more. The model applied to inflation forecasting. The model generalises to unobserved component models where Gaussian shocks are replaced by martingale difference sequences.

Suggested Citation

  • Neil Shephard, 2013. "Martingale unobserved component models," Economics Series Working Papers 2013-W01, University of Oxford, Department of Economics.
  • Handle: RePEc:oxf:wpaper:2013-w01
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    2. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    3. Hernández, Juan R., 2020. "Covered Interest Parity: A Stochastic Volatility Approach to Estimate the Neutral Band," MPRA Paper 100744, University Library of Munich, Germany.
    4. Elmar Mertens & James M. Nason, 2020. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
    5. Frank Schorfheide & Dongho Song & Amir Yaron, 2018. "Identifying Long‐Run Risks: A Bayesian Mixed‐Frequency Approach," Econometrica, Econometric Society, vol. 86(2), pages 617-654, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:2013-w01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Pouliquen (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.