IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/ksfyr.html
   My bibliography  Save this paper

The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective

Author

Listed:
  • Kruschke, John K.
  • Liddell, Torrin

Abstract

In the practice of data analysis, there is a conceptual distinction between hypothesis testing, on the one hand, and estimation with quantified uncertainty, on the other hand. Among frequentists in psychology a shift of emphasis from hypothesis testing to estimation has been dubbed "the New Statistics" (Cumming, 2014). A second conceptual distinction is between frequentist methods and Bayesian methods. Our main goal in this article is to explain how Bayesian methods achieve the goals of the New Statistics better than frequentist methods. The article reviews frequentist and Bayesian approaches to hypothesis testing and to estimation with confidence or credible intervals. The article also describes Bayesian approaches to meta-analysis, randomized controlled trials, and power analysis.

Suggested Citation

  • Kruschke, John K. & Liddell, Torrin, 2016. "The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective," OSF Preprints ksfyr, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:ksfyr
    DOI: 10.31219/osf.io/ksfyr
    as

    Download full text from publisher

    File URL: https://osf.io/download/582bc15fb83f6901fa77ee7e/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/ksfyr?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tore Schweder & Nils Lid Hjort, 2002. "Confidence and Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(2), pages 309-332, June.
    2. David J. Spiegelhalter & Laurence S. Freedman & Mahesh K. B. Parmar, 1994. "Bayesian Approaches to Randomized Trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 157(3), pages 357-387, May.
    3. repec:cup:judgdm:v:9:y:2014:i:6:p:523-547 is not listed on IDEAS
    4. Poole, C., 1987. "Beyond the confidence interval," American Journal of Public Health, American Public Health Association, vol. 77(2), pages 195-199.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco De Pretis & Barbara Osimani, 2019. "New Insights in Computational Methods for Pharmacovigilance: E-Synthesis , a Bayesian Framework for Causal Assessment," IJERPH, MDPI, vol. 16(12), pages 1-19, June.
    2. Andrew Briggs & Paul Fenn, 1998. "Confidence intervals or surfaces? Uncertainty on the cost‐effectiveness plane," Health Economics, John Wiley & Sons, Ltd., vol. 7(8), pages 723-740, December.
    3. Charles F. Manski, 2018. "Reasonable patient care under uncertainty," Health Economics, John Wiley & Sons, Ltd., vol. 27(10), pages 1397-1421, October.
    4. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    5. Xiaokang Luo & Tirthankar Dasgupta & Minge Xie & Regina Y. Liu, 2021. "Leveraging the Fisher randomization test using confidence distributions: Inference, combination and fusion learning," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 777-797, September.
    6. Nicolas Miconnet & Marie Cornu & Annie Beaufort & Laurent Rosso & Jean‐Baptiste Denis, 2005. "Uncertainty Distribution Associated with Estimating a Proportion in Microbial Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 25(1), pages 39-48, February.
    7. Paul Gustafson & Nhu D. Le & Refik Saskin, 2001. "Case–Control Analysis with Partial Knowledge of Exposure Misclassification Probabilities," Biometrics, The International Biometric Society, vol. 57(2), pages 598-609, June.
    8. Piero Veronese & Eugenio Melilli, 2021. "Confidence Distribution for the Ability Parameter of the Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 131-166, March.
    9. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    10. Charles F. Manski & Aleksey Tetenov, 2015. "Clinical trial design enabling ε-optimal treatment rules," CeMMAP working papers 60/15, Institute for Fiscal Studies.
    11. Isakov, Leah & Lo, Andrew W. & Montazerhodjat, Vahid, 2019. "Is the FDA too conservative or too aggressive?: A Bayesian decision analysis of clinical trial design," Journal of Econometrics, Elsevier, vol. 211(1), pages 117-136.
    12. Jingjing Ye & Gregory Reaman, 2022. "Improving Early Futility Determination by Learning from External Data in Pediatric Cancer Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 337-351, July.
    13. Bradley P. Carlin & James S. Hodges, 1999. "Hierarchical Proportional Hazards Regression Models for Highly Stratified Data," Biometrics, The International Biometric Society, vol. 55(4), pages 1162-1170, December.
    14. Karl Claxton & John Posnett, 1996. "An economic approach to clinical trial design and research priority‐setting," Health Economics, John Wiley & Sons, Ltd., vol. 5(6), pages 513-524, November.
    15. Yang Liu & Jan Hannig, 2017. "Generalized Fiducial Inference for Logistic Graded Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1097-1125, December.
    16. Norman Simón Rodríguez Cano, 2018. "Tendencias actuales en la evaluación de políticas públicas," Ensayos de Economía 17296, Universidad Nacional de Colombia Sede Medellín.
    17. Bickel David R., 2012. "Empirical Bayes Interval Estimates that are Conditionally Equal to Unadjusted Confidence Intervals or to Default Prior Credibility Intervals," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-34, February.
    18. Nancy Reid & David R. Cox, 2015. "On Some Principles of Statistical Inference," International Statistical Review, International Statistical Institute, vol. 83(2), pages 293-308, August.
    19. Nezakati, Ensiyeh & Pircalabelu, Eugen, 2021. "Unbalanced distributed estimation and inference for precision matrices," LIDAM Discussion Papers ISBA 2021031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. J. S. Butler & Peter Jones, 2018. "Theoretical and empirical distributions of the p value," METRON, Springer;Sapienza Università di Roma, vol. 76(1), pages 1-30, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:ksfyr. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.