IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/hp259.html
   My bibliography  Save this paper

Examining the influence of user engagement on tourist virtual reality behavioral response from the human-computer interaction perspective: A PLSSEM-IMP-NN hybrid machine learning approach

Author

Listed:
  • Shang, Dawei

Abstract

Due to the impact of the COVID-19 pandemic, new attraction ways are tended to be adapted by compelling sites to provide tours product and services, such as virtual reality (VR) to visitors. Based on human-computer interaction (HCI) user engagement and domain segmentation innovativeness theory, we develop and test a theoretical framework using a hybrid partial least squares structural equation model (PLSSEM) with Importance Performance Matrix (IMP) and neural network machine learning approach (PLSSEM-IMP-NN) that examines key user engagement drivers of visitors’ attitude toward VR (ATT) and in-person tour intentions (ITI) during COVID-19. According to a sample of visitors' response, the results demonstrate that a) user engagement including aesthetic appeal, focused attention, perceived usability, and reward experience, raise attitude toward VR; b) product-possessing innovativeness positively moderates the relationships between ATT and ITI; c) information-possessing innovativeness negatively moderates the relationships between ATT and ITI; d) ATT exert the mediating effect between user engagement and ITI. The proposed new PLSSEM-IMP-NN approach has been examined and denotes its efficient and effective in HCI and behavioral response assessment. Other contributions to theories and practical implications are discussed accordingly.

Suggested Citation

  • Shang, Dawei, 2022. "Examining the influence of user engagement on tourist virtual reality behavioral response from the human-computer interaction perspective: A PLSSEM-IMP-NN hybrid machine learning approach," OSF Preprints hp259, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:hp259
    DOI: 10.31219/osf.io/hp259
    as

    Download full text from publisher

    File URL: https://osf.io/download/634a278eec7f3f3424f5fc73/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/hp259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:hp259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.