IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/cgpmh.html
   My bibliography  Save this paper

Computational optimization of associative learning experiments

Author

Listed:
  • Melinscak, Filip
  • Bach, Dominik R

Abstract

With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems inevitable. However, this trend engenders a challenge of optimal experimental design: due to the flexibility of complex models, it is difficult to intuitively design experiments that will efficiently expose differences between candidate models or allow accurate estimation of their parameters. This challenge is well exemplified in associative learning research. Associative learning theory has a rich tradition of computational modeling, resulting in a growing space of increasingly complex models, which in turn renders manual design of informative experiments difficult. Here we propose a novel method for computational optimization of associative learning experiments. We first formalize associative learning experiments using a low number of tunable design variables, to make optimization tractable. Next, we combine simulation-based Bayesian experimental design with Bayesian optimization to arrive at a flexible method of tuning design variables. Finally, we validate the proposed method through extensive simulations covering both the objectives of accurate parameter estimation and model selection. The validation results show that computationally optimized experimental designs have the potential to substantially improve upon manual designs drawn from the literature, even when prior information guiding the optimization is scarce. Computational optimization of experiments may help address recent concerns over reproducibility by increasing the expected utility of studies, and it may even incentivize practices such as study pre-registration, since optimization requires a pre-specified analysis plan. Moreover, design optimization has the potential not only to improve basic research in domains such as associative learning, but also to play an important role in translational research. For example, design of behavioral and physiological diagnostic tests in the nascent field of computational psychiatry could benefit from an optimization-based approach, similar to the one presented here.

Suggested Citation

  • Melinscak, Filip & Bach, Dominik R, 2019. "Computational optimization of associative learning experiments," OSF Preprints cgpmh, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:cgpmh
    DOI: 10.31219/osf.io/cgpmh
    as

    Download full text from publisher

    File URL: https://osf.io/download/5c6eb23582a395001ac91c7b/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/cgpmh?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:cgpmh. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.