Advanced Search
MyIDEAS: Login to save this paper or follow this series

Sequential Bargaining Under Asymmetric Information

Contents:

Author Info

  • Sanford J. Grossman
  • Motty Perry

Abstract

We analyze an infinite stage, alternating offer bargaining game in which the buyer knows the gains from trade but the seller does not. Under weak assumptions the game has a unique candidate Perfect Sequential Equilibrium, and it can be solved by backward induction. Equilibrium involves the seller making an offer which is accepted by buyers with high gains from trade, while buyers with medium gains reject and make a counteroffer which the seller accepts. Buyers with low gains make an unacceptable offer, and then the whole process repeats itself, Numerical simulations demonstrate the effects of uncertainty on the length of bargaining.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.nber.org/papers/t0056.pdf
Download Restriction: no

Bibliographic Info

Paper provided by National Bureau of Economic Research, Inc in its series NBER Technical Working Papers with number 0056.

as in new window
Length:
Date of creation: May 1986
Date of revision:
Publication status: published as Grossman, Sanford J. and Motty Perry. "Sequential Bargaining Under Asymmetric Information," Journal of Economic Theory, Vol. 39, No. 1, June 1986, pp. 120-154.
Handle: RePEc:nbr:nberte:0056

Contact details of provider:
Postal: National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.
Phone: 617-868-3900
Email:
Web page: http://www.nber.org
More information through EDIRC

Related research

Keywords:

Other versions of this item:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0056. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.