IDEAS home Printed from https://ideas.repec.org/p/mil/wpdepa/2008-045.html
   My bibliography  Save this paper

Measure-valued images, associated fractal transforms and the affine self-similarity of images

Author

Listed:
  • Davide LA TORRE
  • Edward R. VRSCAY
  • Mehran EBRAHIMI
  • Michael F. BARNSLEY

Abstract

We construct a complete metric space (Y,dY) of measure-valued images, ?:X?M(Rg), where X is the base or pixel space and M(Rg) is the set of probability measures supported on the greyscale range Rg. Such a formalism is well-suited to nonlocal image processing, i. e. , the manipulation of the value of an image function u(x) based upon values u(yk) elsewhere in the image. In fact there are situations in which it is useful to consider the greyscale value of an image u at a point x as a random variable that can assume a range of values Rg of R. One example is the characterization of the statistical properties of a class of images, e. g. , MRI brain scans, for a particular application, say image compression. Another example is statistical image processing as applied to the problem of image restoration (denoising or deblurring). Of course, it is not enough to know the greyscale values that may be assumed by an image u at a point x: one must also have an idea of the probabilities (or frequencies) of these values. As such, it may be more useful to represent images by measure-valued functions. We then show how the space (Y,dY) can be employed with a general model of affine self-similarity of images that includes both same-scale as well as cross-scale similarity. We focus on two particular applications: nonlocal-means denoising (same-scale) and multiparent block fractal image coding (cross-scale). In order to accomodate the latter, a new method of fractal transforms is formulated over the metric space (Y,dY). Nonlocal image processing has recently received a great deal of attention, fuelled in part by the exceptional success of the nonlocal means image denoising method. Fractal image coding is another example of a nonlocal image processing method. Both of these methods, which will be described briefly below, may be viewed under the umbrella of a more general model of affine image selfsimilarity, in which subblocks of an image are approximated by other sublocks of the image. Indeed, a number of other image processing methods that exploit self-similarity and the various example-based methods, also fit naturally under this nonlocal, self-similar framework.

Suggested Citation

  • Davide LA TORRE & Edward R. VRSCAY & Mehran EBRAHIMI & Michael F. BARNSLEY, 2008. "Measure-valued images, associated fractal transforms and the affine self-similarity of images," Departmental Working Papers 2008-045, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
  • Handle: RePEc:mil:wpdepa:2008-045
    as

    Download full text from publisher

    File URL: http://wp.demm.unimi.it/tl_files/wp/2008/DEMM-2008_045wp.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mil:wpdepa:2008-045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEMM Working Papers (email available below). General contact details of provider: https://edirc.repec.org/data/damilit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.