IDEAS home Printed from https://ideas.repec.org/p/mcm/deptwp/2021-05.html
   My bibliography  Save this paper

Shape Constrained Kernel PDF and PMF Estimation

Author

Listed:
  • Pang Du
  • Christopher F. Parmeter
  • Jeffrey S. Racine

Abstract

We consider shape constrained kernel-based probability density function (PDF) and probability mass function (PMF) estimation. Our approach is of widespread potential applicability and includes, separately or simultaneously, constraints on the PDF (PMF) function itself, its integral (sum), and derivatives (finite-differences) of any order. We also allow for pointwise upper and lower bounds (i.e., inequality constraints) on the PDF and PMF in addition to more popular equality constraints, and the approach handles a range of transformations of the PDF and PMF including, for example, logarithmic transformations (which allows for the imposition of log-concave or log-convex constraints that are popular with practitioners). Theoretical underpinnings for the procedures are provided. A simulation-based comparison of our proposed approach with those obtained using Grenander-type methods is favourable to our approach when the DGP is itself smooth. As far as we know, ours is also the only smooth framework that handles PDFs and PMFs in the presence of inequality bounds, equality constraints, and other popular constraints such as those mentioned above. An implementation in R exists that incorporates constraints such as monotonicity (both increasing and decreasing), convexity and concavity, and log-convexity and log-concavity, among others, while respecting finite-support boundaries via explicit use of boundary kernel functions.

Suggested Citation

  • Pang Du & Christopher F. Parmeter & Jeffrey S. Racine, 2021. "Shape Constrained Kernel PDF and PMF Estimation," Department of Economics Working Papers 2021-05, McMaster University.
  • Handle: RePEc:mcm:deptwp:2021-05
    as

    Download full text from publisher

    File URL: http://socialsciences.mcmaster.ca/econ/rsrch/papers/archive/2021-05.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cule, Madeleine & Gramacy, Robert B. & Samworth, Richard, 2009. "LogConcDEAD: An R Package for Maximum Likelihood Estimation of a Multivariate Log-Concave Density," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i02).
    2. Jeffrey S. Racine & Qi Li & Karen X. Yan, 2020. "Kernel smoothed probability mass functions for ordered datatypes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(3), pages 563-586, July.
    3. Groeneboom,Piet & Jongbloed,Geurt, 2014. "Nonparametric Estimation under Shape Constraints," Cambridge Books, Cambridge University Press, number 9780521864015.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elina Robeva & Bernd Sturmfels & Ngoc Tran & Caroline Uhler, 2021. "Maximum likelihood estimation for totally positive log‐concave densities," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 817-844, September.
    2. Mao, Lu, 2022. "Identification of the outcome distribution and sensitivity analysis under weak confounder–instrument interaction," Statistics & Probability Letters, Elsevier, vol. 189(C).
    3. Ruixuan Liu & Zhengfei Yu, 2019. "Simple Semiparametric Estimation of Ordered Response Models: with an Application to the Interdependence Duration Models," Tsukuba Economics Working Papers 2019-004, Faculty of Humanities and Social Sciences, University of Tsukuba.
    4. Yoici Arai & Taisuke Otsu & Mengshan Xu, 2022. "GLS under monotone heteroskedasticity," STICERD - Econometrics Paper Series 625, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    5. Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
    6. Babii, Andrii & Kumar, Rohit, 2023. "Isotonic regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 234(2), pages 371-393.
    7. Piet Groeneboom, 2021. "Estimation of the incubation time distribution for COVID‐19," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(2), pages 161-179, May.
    8. Hendrik P. Lopuhaä & Eni Musta, 2017. "Smooth estimation of a monotone hazard and a monotone density under random censoring," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 58-82, January.
    9. Xu, Mengshan & Otsu, Taisuke, 2020. "Score estimation of monotone partially linear index model," LSE Research Online Documents on Economics 106698, London School of Economics and Political Science, LSE Library.
    10. José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.
    11. Giguelay, J. & Huet, S., 2018. "Testing k-monotonicity of a discrete distribution. Application to the estimation of the number of classes in a population," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 96-115.
    12. Taisuke Otsu & Mengshan Xu, 2019. "Score estimation of monotone partially linear index model," STICERD - Econometrics Paper Series 603, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    13. Xi Chen & Victor Chernozhukov & Iv'an Fern'andez-Val & Scott Kostyshak & Ye Luo, 2018. "Shape-Enforcing Operators for Point and Interval Estimators," Papers 1809.01038, arXiv.org, revised Feb 2021.
    14. Rufibach Kaspar, 2012. "A Smooth ROC Curve Estimator Based on Log-Concave Density Estimates," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-29, April.
    15. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2023. "Randomized geometric tools for anomaly detection in stock markets," Post-Print hal-04223511, HAL.
    16. Sungwook Kim & Michael P. Fay & Michael A. Proschan, 2021. "Valid and approximately valid confidence intervals for current status data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 438-452, July.
    17. Quan Li & Xin Wang & Shuaiang Rong, 2018. "Probabilistic Load Flow Method Based on Modified Latin Hypercube-Important Sampling," Energies, MDPI, vol. 11(11), pages 1-14, November.
    18. Lu Mao & Dan-Yu Lin & Donglin Zeng, 2017. "Semiparametric regression analysis of interval-censored competing risks data," Biometrics, The International Biometric Society, vol. 73(3), pages 857-865, September.
    19. Ben O’Neill, 2022. "Smallest covering regions and highest density regions for discrete distributions," Computational Statistics, Springer, vol. 37(3), pages 1229-1254, July.
    20. repec:jss:jstsof:39:i06 is not listed on IDEAS
    21. Hu, Hao & Yao, Weixin & Wu, Yichao, 2017. "The robust EM-type algorithms for log-concave mixtures of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 14-26.

    More about this item

    Keywords

    nonparametric; density; restricted estimation;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mcm:deptwp:2021-05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/demcmca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.