IDEAS home Printed from https://ideas.repec.org/p/iik/wpaper/188.html
   My bibliography  Save this paper

A special class of distorted premium principle based on an extension of the exponential-geometric distribution

Author

Listed:
  • Shovan Chowdhury

    (Indian Institute of Management Kozhikode)

  • Asok K Nanda

    (Indian Institute of Science and Education Research, Kolkata.)

Abstract

In this paper a new probability density function with both unbounded and bounded support is presented. The new distribution, called modified exponential-geometric distribution arises from the exponential-geomeric distribution introduced by Adamidis and Loukas [1]. It presents a variety of shapes of density function and hazard rate function. The distribution with scale-transformed bounded support is considered as an alternative to the classical beta distribution and is shown to have an application in insurance. In particular, we suggest a special class of distorted premium principle based on this distribution and we compare it with the dual power premium principle. Moreover, the proposed distribution with unbounded support is used as a lifetime model and is considered as an attractive alternative to some existing models in the reliability literature.

Suggested Citation

  • Shovan Chowdhury & Asok K Nanda, 2015. "A special class of distorted premium principle based on an extension of the exponential-geometric distribution," Working papers 188, Indian Institute of Management Kozhikode.
  • Handle: RePEc:iik:wpaper:188
    as

    Download full text from publisher

    File URL: https://iimk.ac.in/websiteadmin/FacultyPublications/Working%20Papers/188fullp.pdf?t=58
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Felipe Gusmão & Edwin Ortega & Gauss Cordeiro, 2011. "The generalized inverse Weibull distribution," Statistical Papers, Springer, vol. 52(3), pages 591-619, August.
    2. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    3. Adamidis, K. & Loukas, S., 1998. "A lifetime distribution with decreasing failure rate," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 35-42, July.
    4. Gómez-Déniz, Emilio & Sordo, Miguel A. & Calderín-Ojeda, Enrique, 2014. "The Log–Lindley distribution as an alternative to the beta regression model with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 49-57.
    5. Morais, Alice Lemos & Barreto-Souza, Wagner, 2011. "A compound class of Weibull and power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1410-1425, March.
    6. Kus, Coskun, 2007. "A new lifetime distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4497-4509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    2. Mahmoudi, Eisa & Jafari, Ali Akbar, 2012. "Generalized exponential–power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4047-4066.
    3. Vicente G. Cancho & Márcia A. C. Macera & Adriano K. Suzuki & Francisco Louzada & Katherine E. C. Zavaleta, 2020. "A new long-term survival model with dispersion induced by discrete frailty," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 221-244, April.
    4. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    5. Shovan Chowdhury, 2014. "Compounded Generalized Weibull Distributions - A Unified Approach," Working papers 148, Indian Institute of Management Kozhikode.
    6. Bagheri, S.F. & Bahrami Samani, E. & Ganjali, M., 2016. "The generalized modified Weibull power series distribution: Theory and applications," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 136-160.
    7. Rasool Roozegar & G. G. Hamedani & Leila Amiri & Fatemeh Esfandiyari, 2020. "A New Family of Lifetime Distributions: Theory, Application and Characterizations," Annals of Data Science, Springer, vol. 7(1), pages 109-138, March.
    8. Beatriz R. Lanjoni & Edwin M. M. Ortega & Gauss M. Cordeiro, 2016. "Extended Burr XII Regression Models: Theory and Applications," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 203-224, March.
    9. Bobotas, Panayiotis & Koutras, Markos V., 2019. "Distributions of the minimum and the maximum of a random number of random variables," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 57-64.
    10. Jimut Bahan Chakrabarty & Shovan Chowdhury, 2016. "Compounded Inverse Weibull Distributions: Properties, Inference and Applications," Working papers 213, Indian Institute of Management Kozhikode.
    11. Mahmoudi, Eisa & Sepahdar, Afsaneh, 2013. "Exponentiated Weibull–Poisson distribution: Model, properties and applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 76-97.
    12. Louzada, Francisco & Roman, Mari & Cancho, Vicente G., 2011. "The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2516-2524, August.
    13. Bakouch, Hassan S. & Ristić, Miroslav M. & Asgharzadeh, A. & Esmaily, L. & Al-Zahrani, Bander M., 2012. "An exponentiated exponential binomial distribution with application," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1067-1081.
    14. Deepesh Bhati & Mohd. Malik & H. Vaman, 2015. "Lindley–Exponential distribution: properties and applications," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 335-357, December.
    15. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    16. Feyza Günay & Mehmet Yilmaz, 2018. "Different Parameter Estimation Methods for Exponential Geometric Distribution and Its Applications in Lifetime Data Analysis," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(2), pages 36-43, September.
    17. Shahsanaei Fatemeh & Rezaei Sadegh & Pak Abbas, 2012. "A New Two-Parameter Lifetime Distribution with Increasing Failure Rate," Stochastics and Quality Control, De Gruyter, vol. 27(1), pages 1-17, September.
    18. Eryilmaz, Serkan, 2016. "A new class of lifetime distributions," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 63-71.
    19. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    20. Ausaina Niyomdecha & Patchanok Srisuradetchai, 2023. "Complementary Gamma Zero-Truncated Poisson Distribution and Its Application," Mathematics, MDPI, vol. 11(11), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iik:wpaper:188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sudheesh Kumar (email available below). General contact details of provider: https://edirc.repec.org/data/iikmmin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.