Advanced Search
MyIDEAS: Login

Quantile uncorrelation and instrumental regressions

Contents:

Author Info

  • Tatiana Komarova
  • Thomas Severini
  • Elie Tamer

    ()
    (Institute for Fiscal Studies and Northwestern University)

Abstract

We introduce a notion of median uncorrelation that is a natural extension of mean (linear) uncorrelation. A scalar random variable Y is median uncorrelated with a k-dimensional random vector X if and only if the slope from an LAD regression of Y on X is zero. Using this simple definition, we characterize properties of median uncorrelated random variables, and introduce a notion of multivariate median uncorrelation. We provide measures of median uncorrelation that are similar to the linear correlation coefficient and the coefficient of determination. We also extend this median uncorrelation to other loss functions. As two stage least squares exploits mean uncorrelation between an instrument vector and the error to derive consistent estimators for parameters in linear regressions with endogenous regressors, the main result of this paper shows how a median uncorrelation assumption between an instrument vector and the error can similarly be used to derive consistent estimators in these linear models with endogenous regressors. We also show how median uncorrelation can be used in linear panel models with quantile restrictions and in linear models with measurement errors.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cemmap.ifs.org.uk/wps/cwp2610.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP26/10.

as in new window
Length:
Date of creation: Sep 2010
Date of revision:
Handle: RePEc:ifs:cemmap:26/10

Contact details of provider:
Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Email:
Web page: http://cemmap.ifs.org.uk
More information through EDIRC

Order Information:
Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Email:

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:26/10. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stephanie Seavers).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.