IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00257454.html
   My bibliography  Save this paper

Pure Exploration for Multi-Armed Bandit Problems

Author

Listed:
  • Sébastien Bubeck

    (SEQUEL - Sequential Learning - LIFL - Laboratoire d'Informatique Fondamentale de Lille - Université de Lille, Sciences et Technologies - Inria - Institut National de Recherche en Informatique et en Automatique - Université de Lille, Sciences Humaines et Sociales - CNRS - Centre National de la Recherche Scientifique - Inria Lille - Nord Europe - Inria - Institut National de Recherche en Informatique et en Automatique - LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal - Université de Lille, Sciences et Technologies - Centrale Lille - CNRS - Centre National de la Recherche Scientifique)

  • Rémi Munos

    (SEQUEL - Sequential Learning - LIFL - Laboratoire d'Informatique Fondamentale de Lille - Université de Lille, Sciences et Technologies - Inria - Institut National de Recherche en Informatique et en Automatique - Université de Lille, Sciences Humaines et Sociales - CNRS - Centre National de la Recherche Scientifique - Inria Lille - Nord Europe - Inria - Institut National de Recherche en Informatique et en Automatique - LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal - Université de Lille, Sciences et Technologies - Centrale Lille - CNRS - Centre National de la Recherche Scientifique)

  • Gilles Stoltz

    (DMA - Département de Mathématiques et Applications - ENS Paris - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris sciences et lettres - CNRS - Centre National de la Recherche Scientifique, GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

Abstract

We consider the framework of stochastic multi-armed bandit problems and study the possibilities and limitations of forecasters that perform an on-line exploration of the arms. These forecasters are assessed in terms of their simple regret, a regret notion that captures the fact that exploration is only constrained by the number of available rounds (not necessarily known in advance), in contrast to the case when the cumulative regret is considered and when exploitation needs to be performed at the same time. We believe that this performance criterion is suited to situations when the cost of pulling an arm is expressed in terms of resources rather than rewards. We discuss the links between the simple and the cumulative regret. One of the main results in the case of a finite number of arms is a general lower bound on the simple regret of a forecaster in terms of its cumulative regret: the smaller the latter, the larger the former. Keeping this result in mind, we then exhibit upper bounds on the simple regret of some forecasters. The paper ends with a study devoted to continuous-armed bandit problems; we show that the simple regret can be minimized with respect to a family of probability distributions if and only if the cumulative regret can be minimized for it. Based on this equivalence, we are able to prove that the separable metric spaces are exactly the metric spaces on which these regrets can be minimized with respect to the family of all probability distributions with continuous mean-payoff functions.

Suggested Citation

  • Sébastien Bubeck & Rémi Munos & Gilles Stoltz, 2010. "Pure Exploration for Multi-Armed Bandit Problems," Working Papers hal-00257454, HAL.
  • Handle: RePEc:hal:wpaper:hal-00257454
    Note: View the original document on HAL open archive server: https://hal.science/hal-00257454v6
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00257454v6/document
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annie Liang & Xiaosheng Mu & Vasilis Syrgkanis, 2017. "Dynamic Information Acquisition from Multiple Sources," PIER Working Paper Archive 17-023, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 17 Aug 2017.
    2. Caio Waisman & Harikesh S. Nair & Carlos Carrion, 2019. "Online Causal Inference for Advertising in Real-Time Bidding Auctions," Papers 1908.08600, arXiv.org, revised Feb 2024.
    3. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    4. Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
    5. Yishay Mansour & Aleksandrs Slivkins & Vasilis Syrgkanis, 2019. "Bayesian Incentive-Compatible Bandit Exploration," Operations Research, INFORMS, vol. 68(4), pages 1132-1161, July.
    6. Sébastien Bubeck & Rémi Munos & Gilles Stoltz & Csaba Szepesvari, 2011. "X-Armed Bandits," Post-Print hal-00450235, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00257454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.