IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02313361.html
   My bibliography  Save this paper

Travel-time models and fill-grade factor analysis for double-deep multi-aisle AS/RSs

Author

Listed:
  • Xianhao Xu

    (EM - EMLyon Business School)

  • Bipan Zou
  • Guwen Shen
  • Yeming Gong

Abstract

Double-deep multi-aisle automated storage/retrieval systems are increasingly applied for storing and retrieving unit loads, with advantages of increased space utilisation, reduced number of aisles and improved efficiency of storage rack (S/R) machines. In such systems, the retrieval process may consist of the rearrangement of blocking loads, based on the assumptions of uniformly distributed storage locations and random storage policy. We formulate analytical travel-time models of both single- and dual-command cycles under three rearrangement rules. We validate the analytical travel-time models by simulation and conduct numerical experiments to analyse the effect of the number of aisles an S/R machine serves, the fill-grade factor and the command cycles on the expected travel time of the S/R machine. The results show that the expected travel time of the S/R machine is increasing with the increase in the number of aisles an S/R machine serves and the increase in the fill-grade factor, and dual command cycle outperforms single-command cycle in terms of cycle time. To deal with the trade-off between the storage space cost and the operational cost of the S/R machine, we develop a decision model for finding an optimal fill-grade factor to minimise the total cost. We find the condition when an optimal fill-grade factor exists and show how to calculate it. Based on the decision model, we compare the performance of double-deep multi-aisle automated storage/retrieval system (AS/RSs) and single-deep single-aisle AS/RSs. The results show that double-deep multi-aisle AS/RSs outperform single-deep single-aisle AS/RSs in terms of total cost, although double-deep multi-aisle AS/RSs need more storage locations.

Suggested Citation

  • Xianhao Xu & Bipan Zou & Guwen Shen & Yeming Gong, 2016. "Travel-time models and fill-grade factor analysis for double-deep multi-aisle AS/RSs," Post-Print hal-02313361, HAL.
  • Handle: RePEc:hal:journl:hal-02313361
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02313361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.