IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/85121.html
   My bibliography  Save this paper

The optimal consumption function in a Brownian model of accumulation. Part C: a dynamical system formulation

Author

Listed:
  • Foldes, Lucien

Abstract

This Paper continues the study of the Optimal Consumption Function in a Brownian Model of Accumulation, see Part A [2001] and Part B [2014]; a further Part D, dealing with the effects of perturbations of the Brownian model, is in preparation. We begin here with a review of the o.d.e. system S which was used in Part B for the proof of the existence of an optimal consumption function. This system is non-linear, two dimensional but bilaterally asymptotically autonomous with limiting systems as log-capital tends to plus/minus infinity, each of which has a unique saddle point. An important part is played in the existence proof by the sets of forward/backward ‘special’ solutions, i.e. solutions of S converging to the asymptotic saddle points, and by their representing functions f and g. A ‘star’ solution, which is both a forward and a backward special solution, corresponds to an optimal consumption function. It is shown here that the sets of special solutions of S are C(1) sub-manifolds of R(3), hence that the functions f and g are continuously differentiable. The argument involves the construction of an imbedding of S in a 3-D autonomous dynamical system such that the asymptotic saddle points are mapped to saddle points of the 3-D system and the sets of forward/backward special solutions are mapped into stable/unstable manifolds. The usual Stable/Unstable Manifold Theorem for hyperbolic stationary points then yields the required C(1) properties locally (i.e. near saddle points), and these properties can be extended globally. A ‘star’ solution of S then corresponds to a saddle connection in the 3-D system. A stability result for the saddle connection is given for a special case.

Suggested Citation

  • Foldes, Lucien, 2017. "The optimal consumption function in a Brownian model of accumulation. Part C: a dynamical system formulation," LSE Research Online Documents on Economics 85121, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:85121
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/85121/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    consumption; capital accumulation; Brownian motion; optimisation; ordinarydifferential equations; boundary value problems;
    All these keywords.

    JEL classification:

    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General
    • E13 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Neoclassical
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:85121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.