IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/117305.html
   My bibliography  Save this paper

Bayesian nonparametric disclosure risk assessment

Author

Listed:
  • Favaro, Stefano
  • Panero, Francesca
  • Rigon, Tommaso

Abstract

Any decision about the release of microdata for public use is supported by the estimation of measures of disclosure risk, the most popular being the number τ1 of sample uniques that are also population uniques. In such a context, parametric and nonparametric partition-based models have been shown to have: i) the strength of leading to estimators of τ1 with desirable features, including ease of implementation, computational efficiency and scalability to massive data; ii) the weakness of producing underestimates of τ1 in realistic scenarios, with the underestimation getting worse as the tail behaviour of the empirical distribution of microdata gets heavier. To fix this underestimation phenomenon, we propose a Bayesian nonparametric partition-based model that can be tuned to the tail behaviour of the empirical distribution of microdata. Our model relies on the Pitman–Yor process prior, and it leads to a novel estimator of τ1 with all the desirable features of partition-based estimators and that, in addition, allows to reduce underestimation by tuning a “discount” parameter. We show the effectiveness of our estimator through its application to synthetic data and real data.

Suggested Citation

  • Favaro, Stefano & Panero, Francesca & Rigon, Tommaso, 2021. "Bayesian nonparametric disclosure risk assessment," LSE Research Online Documents on Economics 117305, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:117305
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/117305/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reiter, Jerome P., 2005. "Estimating Risks of Identification Disclosure in Microdata," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1103-1112, December.
    2. C. J. Skinner & M. J. Elliot, 2002. "A measure of disclosure risk for microdata," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 855-867, October.
    3. Skinner, Chris J. & Shlomo, Natalie, 2008. "Assessing identification risk in survey microdata using log-linear models," LSE Research Online Documents on Economics 39112, London School of Economics and Political Science, LSE Library.
    4. A. Canale & A. Lijoi & B. Nipoti & I. Prünster, 2017. "On the Pitman–Yor process with spike and slab base measure," Biometrika, Biometrika Trust, vol. 104(3), pages 681-697.
    5. Bruno Scarpa & David B. Dunson, 2009. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors," Biometrics, The International Biometric Society, vol. 65(3), pages 772-780, September.
    6. Daniel Manrique-Vallier & Jerome P. Reiter, 2012. "Estimating Identification Disclosure Risk Using Mixed Membership Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1385-1394, December.
    7. Skinner, Chris & Shlomo, Natalie, 2008. "Assessing Identification Risk in Survey Microdata Using Log-Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 989-1001.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shlomo, Natalie & Skinner, Chris, 2022. "Measuring risk of re-identification in microdata: state-of-the art and new directions," LSE Research Online Documents on Economics 117168, London School of Economics and Political Science, LSE Library.
    2. Natalie Shlomo & Chris Skinner, 2022. "Measuring risk of re‐identification in microdata: State‐of‐the art and new directions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1644-1662, October.
    3. James Jackson & Robin Mitra & Brian Francis & Iain Dove, 2022. "Using saturated count models for user‐friendly synthesis of large confidential administrative databases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1613-1643, October.
    4. Christine M. O'Keefe & James O. Chipperfield, 2013. "A Summary of Attack Methods and Confidentiality Protection Measures for Fully Automated Remote Analysis Systems," International Statistical Review, International Statistical Institute, vol. 81(3), pages 426-455, December.
    5. Cinzia Carota & Maurizio Filippone & Silvia Polettini, 2022. "Assessing Bayesian Semi‐Parametric Log‐Linear Models: An Application to Disclosure Risk Estimation," International Statistical Review, International Statistical Institute, vol. 90(1), pages 165-183, April.
    6. Li‐Chun Zhang & Gustav Haraldsen, 2022. "Secure big data collection and processing: Framework, means and opportunities," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1541-1559, October.
    7. Canale, Antonio & Lijoi, Antonio & Nipoti, Bernardo & Prünster, Igor, 2023. "Inner spike and slab Bayesian nonparametric models," Econometrics and Statistics, Elsevier, vol. 27(C), pages 120-135.
    8. Skinner, Chris J., 2007. "The probability of identification: applying ideas from forensic statistics to disclosure risk assessment," LSE Research Online Documents on Economics 39105, London School of Economics and Political Science, LSE Library.
    9. Daniel R. Kowal & Antonio Canale, 2021. "Semiparametric Functional Factor Models with Bayesian Rank Selection," Papers 2108.02151, arXiv.org, revised May 2022.
    10. Prada, Sergio I & Gonzalez, Claudia & Borton, Joshua & Fernandes-Huessy, Johannes & Holden, Craig & Hair, Elizabeth & Mulcahy, Tim, 2011. "Avoiding disclosure of individually identifiable health information: a literature review," MPRA Paper 35463, University Library of Munich, Germany.
    11. Drechsler, Jörg & Reiter, Jerome P., 2011. "An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3232-3243, December.
    12. Eurosystem Household Finance and Consumption Network, 2013. "The Eurosystem Household Finance and Consumption Survey - Methodological report," Statistics Paper Series 1, European Central Bank.
    13. Sergio I. Prada & Claudia González-Martínez & Joshua Borton & Johannes Fernandes-Huessy & Craig Holden & Elizabeth Hair & and Tim Mulcahy, 2011. "Avoiding Disclosure of Individually Identifiable Health Information," SAGE Open, , vol. 1(3), pages 21582440114, October.
    14. Krenzke Tom & Li Jianzhu & Gentleman Jane F. & Moriarity Chris, 2013. "Addressing Disclosure Concerns and Analysis Demands in a Real-Time Online Analytic System," Journal of Official Statistics, Sciendo, vol. 29(1), pages 99-124, March.
    15. Lawless Caroline & Arbel Julyan, 2019. "A simple proof of Pitman–Yor’s Chinese restaurant process from its stick-breaking representation," Dependence Modeling, De Gruyter, vol. 7(1), pages 45-52, March.
    16. Iwona Bąk & Katarzyna Cheba, 2022. "Green Transformation: Applying Statistical Data Analysis to a Systematic Literature Review," Energies, MDPI, vol. 16(1), pages 1-22, December.
    17. C. J. Skinner, 2007. "The probability of identification: applying ideas from forensic statistics to disclosure risk assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 195-212, January.
    18. Chipperfield James O., 2014. "Disclosure-Protected Inference with Linked Microdata Using a Remote Analysis Server," Journal of Official Statistics, Sciendo, vol. 30(1), pages 123-146, March.
    19. Ron S. Jarmin & John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Nathan Goldschlag & Michael B. Hawes & Sallie Ann Keller & Daniel Kifer & Philip Leclerc & Jerome P. Reiter & Rolando A. Rodrígue, 2023. "An in-depth examination of requirements for disclosure risk assessment," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(43), pages 2220558120-, October.
    20. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.

    More about this item

    Keywords

    Bayesian nonparametrics; data confidentiality; Dirichlet process prior; disclosure risk assessment; empirical Bayes; Pitman-Yor process prior; European Union’s Horizon 2020 research and innovation programme under grant agreement No 817257.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:117305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.