Author
Abstract
Optimal age replacement policies for network components such as cables, overhead lines or transformers are usually identified based on gathered knowledge about the state of a component and its stochastic deterioration process. In this context, uncertainty is an important challenge because current information about the aging process may be false. Especially in the context of innovative use of newly developed network equipment some experience knowledge from similar equipment might exist or pre-testing under laboratory conditions could allow setting up hypothesis about the characteristics of aging. Nonetheless, substantial uncertainty is still common in replacement. An example in this context is the lifetime of PE tubes in gas networks, which is not very well explored due to the fact that no tubes older than 40 years exist. The length of the aging process as well as the expected starting date can be inferred only to some confidence probability. Apart from newly developed equipment, production imperfections like the Water treeing Effect in cable insulations led to very early replacement of complete lots of cables because the insulation deteriorated much earlier than initially expected. Hence, the question arises how these different sources of uncertainty will impact the network operator's replacement decision. Further it is of interest how much value can be attributed to the reduction of the uncertainty. In this paper, an optimal replacement strategy in an analytical stationary state model is derived explicitly with local and global optima. Based on a discrete mixture model of failure rates under perfect replacement, we show how different assumptions about the underlying type of uncertainty will affect the replacement decision. In a further step, the value of information representing the cost difference between a state of parameter certainty and the state of parameter uncertainty is derived. Trough the course of some applications, it is shown that the value of information increases with the level of uncertainty. Some exemplary calculations are presented to show that the magnitude of the value of information is significant.
Suggested Citation
Stephan Schaeffler & Dominik Schober & Christoph Weber, 2012.
"Technical Uncertainty and Value of Information with Application to Optimal Network Component Replacement,"
EWL Working Papers
1203, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Jun 2012.
Handle:
RePEc:dui:wpaper:1203
Download full text from publisher
More about this item
Keywords
;
;
;
;
;
JEL classification:
- C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
- D21 - Microeconomics - - Production and Organizations - - - Firm Behavior: Theory
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dui:wpaper:1203. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andreas Fritz (email available below). General contact details of provider: https://edirc.repec.org/data/fwessde.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.