Advanced Search
MyIDEAS: Login to save this paper or follow this series

Analytic And Bootstrap Approximations Of Prediction Errors Under A Multivariate Fay-Herriot Model

Contents:

Author Info

  • Wenceslao Gonzalez-Manteiga
  • Maria J. Lombardia
  • Isabel Molina

    ()

  • Domingo Morales
  • Laureano Santamaria
Registered author(s):

    Abstract

    A Multivariate Fay-Herriot model is used to aid the prediction of small area parameters of dependent variables with sample data aggregated to area level. The empirical best linear unbiased predictor of the parameter vector is used, and an approximation of the elements of the mean cross product error matrix is obtained by an extension of the results of Prasad and Rao (1990) to the multiparameter case. Three different bootstrap approximations of those elements are introduced, and a simulation study is developed in order to compare the efficiency of all presented approximations, including a comparison under lack of normality. Further, the number of replications needed for the bootstrap procedures to get stabilized are studied.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://docubib.uc3m.es/WORKINGPAPERS/WS/ws054910.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws054910.

    as in new window
    Length:
    Date of creation: Sep 2005
    Date of revision:
    Handle: RePEc:cte:wsrepe:ws054910

    Contact details of provider:
    Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
    Phone: 6249847
    Fax: 6249849
    Web page: http://www.uc3m.es/uc3m/dpto/DEE/departamento.html
    More information through EDIRC

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws054910. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.