Advanced Search
MyIDEAS: Login to save this paper or follow this series

Singular Random Matrix Decompositions: Distributions

Contents:

Author Info

  • José A. Díaz-García

    ()

  • Graciela González-Farías

    ()

Registered author(s):

    Abstract

    Assuming that Y has a singular matrix variate elliptically contoured distribution with respect to the Hausdorff measure, the distributions of several matrices associated to QR, modified QR, SV and Polar decompositions of matrix Y are determined, for central and non-central, non-singular and singular cases, as well as their relationship to the Wishart and Pseudo-Wishart generalized singular and non-singular distributions. We present a particular example for the Karhunen-Lòeve decomposition. Some of these results are also applied to two particular subfamilies of elliptical distributions, the singular matrix variate normal distribution and the singular matrix variate symmetric Pearson type VII distribution.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://docubib.uc3m.es/WORKINGPAPERS/WS/ws024211.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws024211.

    as in new window
    Length:
    Date of creation: Sep 2002
    Date of revision:
    Handle: RePEc:cte:wsrepe:ws024211

    Contact details of provider:
    Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
    Phone: 6249847
    Fax: 6249849
    Web page: http://www.uc3m.es/uc3m/dpto/DEE/departamento.html
    More information through EDIRC

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Goodall, Colin & Mardia, Kanti V., 1992. "The noncentral Bartlett decompositions and shape densities," Journal of Multivariate Analysis, Elsevier, vol. 40(1), pages 94-108, January.
    2. Díaz-García, José A. & Jáimez, Ramón Gutierrez & Mardia, Kanti V., 1997. "Wishart and Pseudo-Wishart Distributions and Some Applications to Shape Theory," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 73-87, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws024211. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.