IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2017-83.html
   My bibliography  Save this paper

Learning Generative Models with Sinkhorn Divergences

Author

Listed:
  • Aude Geneway

    (CEREMADE; Université Paris-Dauphine)

  • Gabriel Peyré

    (CNRS; DMA; École Normale Supérieure)

  • Marco Cuturi

    (ENSAE; CREST; Université Paris-Saclay)

Abstract

The ability to compare two degenerate probability distributions, that is two distributions supported on low-dimensional manifolds in much higher-dimensional spaces, is a crucial factor in the estimation of generative models. It is therefore no surprise that optimal transport (OT) metrics and their ability to handle measures with non-overlapping supports have emerged as a promising tool. Yet, training generative machines using OT raises formidable computational and statistical challenges, because of (i) the computational burden of evaluating OT losses, (ii) their instability and lack of smoothness, (iii) the difficulty to estimate them, as well as their gradients, in high dimension. This paper presents the first tractable method to train large scale generative models using an OT-based loss called Sinkhorn loss which tackles these three issues by relying on two key ideas: (a) entropic smoothing, which turns the original OT loss into a differentiable and more robust quantity that can be computed using Sinkhorn fixed point iterations; (b) algorithmic (automatic) differentiation of these iterations with seamless GPU execution. Additionally, Entropic smoothing generates a family of losses interpolating between Wasserstein (OT) and Energy distance/Maximum Mean Discrepancy (MMD) losses, thus allowing to find a sweet spot leveraging the geometry of OT on the one hand, and the favorable high-dimensional sample complexity of MMD, which comes with unbiased gradient estimates. The resulting computational architecture complements nicely standard deep network generative models by

Suggested Citation

  • Aude Geneway & Gabriel Peyré & Marco Cuturi, 2017. "Learning Generative Models with Sinkhorn Divergences," Working Papers 2017-83, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2017-83
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2017-83.pdf
    File Function: CREST working paper version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bassetti, Federico & Bodini, Antonella & Regazzini, Eugenio, 2006. "On minimum Kantorovich distance estimators," Statistics & Probability Letters, Elsevier, vol. 76(12), pages 1298-1302, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    2. Shi, Chengchun & Xu, Tianlin & Bergsma, Wicher & Li, Lexin, 2021. "Double generative adversarial networks for conditional independence testing," LSE Research Online Documents on Economics 112550, London School of Economics and Political Science, LSE Library.
    3. Stephan Eckstein & Michael Kupper & Mathias Pohl, 2020. "Robust risk aggregation with neural networks," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1229-1272, October.
    4. Florian Ziel, 2020. "The energy distance for ensemble and scenario reduction," Papers 2005.14670, arXiv.org, revised Oct 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    2. Emanuele Dolera, 2022. "Preface to the Special Issue on “Bayesian Predictive Inference and Related Asymptotics—Festschrift for Eugenio Regazzini’s 75th Birthday”," Mathematics, MDPI, vol. 10(15), pages 1-4, July.
    3. Morgan A. Schmitz & Matthieu Heitz & Nicolas Bonneel & Fred Ngolè & David Coeurjolly, 2017. "Wasserstein Dictionary Learning: Optimal Transport-based unsupervised non-linear dictionary learning," Working Papers 2017-84, Center for Research in Economics and Statistics.
    4. Manuel Arellano & Stéphane Bonhomme, 2023. "Recovering Latent Variables by Matching," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 693-706, January.
    5. Combes, Catherine & Ng, Hon Keung Tony, 2022. "On parameter estimation for Amoroso family of distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 309-327.
    6. Shun-ichi Amari & Takeru Matsuda, 2022. "Wasserstein statistics in one-dimensional location scale models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 33-47, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2017-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.