IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp1225.html
   My bibliography  Save this paper

Cone-Constrained Continuous-Time Markowitz Problems

Author

Listed:
  • Christoph Czichowsky

    (Vienna University of Technology)

  • Martin Schweizer

    (ETH Zürich)

Abstract

The Markowitz problem consists of finding in a financial market a self-financing trading strategy whose final wealth has maximal mean and minimal variance. We study this in continuous time in a general semimartingale model and under cone constraints: Trading strategies must take values in a (possibly random and timedependent) closed cone. We first prove existence of a solution for convex constraints by showing that the space of constrained terminal gains, which is a space of stochastic integrals, is closed in L2. Then we use stochastic controlmethods to describe the local structure of the optimal strategy, as follows. The value process of a naturally associated constrained linear-quadratic optimal control problem is decomposed into a sum with two opportunity processes L± appearing as coefficients. The martingale optimality principle translates into a drift condition for the semimartingale characteristics of L± or equivalently into a coupled system of backward stochastic differential equations for L±. We show how this can be used to both characterise and construct optimal strategies. Our results explain and generalise all the results available in the literature so far. Moreover, we even obtain new sharp results in the unconstrained case.

Suggested Citation

  • Christoph Czichowsky & Martin Schweizer, 2012. "Cone-Constrained Continuous-Time Markowitz Problems," Swiss Finance Institute Research Paper Series 12-25, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp1225
    as

    Download full text from publisher

    File URL: http://ssrn.com/abstract=2084753
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Markowitz problem; cone constraints; portfolio selection; mean-variance; hedging; stochastic control; semimartingales; BSDEs; martingale optimality principle; opportunity process; E-martingales; linear-quadratic control;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp1225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.