IDEAS home Printed from https://ideas.repec.org/p/cep/stiecm/599.html
   My bibliography  Save this paper

Likelihood ratio inference for missing data models

Author

Listed:
  • Karun Adusumilli
  • Taisuke Otsu

Abstract

Missing or incomplete outcome data is a ubiquitous problem in biomedical and social sciences. Under the missing at random setup, inverse probability weighting is widely applied to estimate and make inference on the population objects of interest, but it is known that its performance can be poor in practical sample sizes. Recently, to overcome this problem, several alternative weighting methods have been proposed that directly balance the distributional characteristics of covariates. These existing balancing methods are useful for obtaining point estimates of the population objects. The purpose of this paper is to develop a new weighting scheme, based on Empirical Likelihood, that would be useful for conducting interval estimation or hypothesis testing. In particular, we propose re-weighting the covariate balancing weights so that the resulting objective function admits an asymptotic chi-square calibration. Our re-weighting method is naturally extended to inference on treatment effects, data combination models, and high-dimensional covariates. Simulation and empirical examples illustrate usefulness of the proposed method.

Suggested Citation

  • Karun Adusumilli & Taisuke Otsu, 2018. "Likelihood ratio inference for missing data models," STICERD - Econometrics Paper Series 599, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  • Handle: RePEc:cep:stiecm:599
    as

    Download full text from publisher

    File URL: https://sticerd.lse.ac.uk/dps/em/em599.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Card, David & Krueger, Alan B, 1994. "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," American Economic Review, American Economic Association, vol. 84(4), pages 772-793, September.
    2. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    3. Hainmueller, Jens, 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies," Political Analysis, Cambridge University Press, vol. 20(1), pages 25-46, January.
    4. Bryan S. Graham, 2011. "Efficiency Bounds for Missing Data Models With Semiparametric Restrictions," Econometrica, Econometric Society, vol. 79(2), pages 437-452, March.
    5. Jing Qin & Biao Zhang, 2007. "Empirical‐likelihood‐based inference in missing response problems and its application in observational studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 101-122, February.
    6. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    7. Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2016. "Efficient Estimation of Data Combination Models by the Method of Auxiliary-to-Study Tilting (AST)," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 288-301, April.
    8. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    9. Qin, Jing & Zhang, Biao & Leung, Denis H. Y., 2009. "Empirical Likelihood in Missing Data Problems," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1492-1503.
    10. Kwun Chuen Gary Chan & Sheung Chi Phillip Yam & Zheng Zhang, 2016. "Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 673-700, June.
    11. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adusumilli, Karun & Otsu, Taisuke & Qiu, Chen, 2023. "Reweighted nonparametric likelihood inference for linear functionals," LSE Research Online Documents on Economics 120198, London School of Economics and Political Science, LSE Library.
    2. Karun Adusumilli & Taisuke Otsu & Chen Qiu, 2020. "Reweighted nonparametric likelihood inference for linear functionals," STICERD - Econometrics Paper Series 614, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    3. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    4. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    5. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    6. Pierre Chausse & George Luta, 2017. "Casual Inference using Generalized Empirical Likelihood Methods," Working Papers 1707, University of Waterloo, Department of Economics, revised Dec 2017.
    7. Graham, Bryan S. & Pinto, Cristine Campos de Xavier, 2022. "Semiparametrically efficient estimation of the average linear regression function," Journal of Econometrics, Elsevier, vol. 226(1), pages 115-138.
    8. Bryan S. Graham & Guido W. Imbens & Geert Ridder, 2020. "Identification and Efficiency Bounds for the Average Match Function Under Conditionally Exogenous Matching," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 303-316, April.
    9. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
    10. Bryan S. Graham & Guido Imbens & Geert Ridder, 2016. "Identification and efficiency bounds for the average match function under conditionally exogenous matching," CeMMAP working papers 10/16, Institute for Fiscal Studies.
    11. Nikolay Doudchenko & Guido W. Imbens, 2016. "Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis," NBER Working Papers 22791, National Bureau of Economic Research, Inc.
    12. Kwun Chuen Gary Chan & Sheung Chi Phillip Yam & Zheng Zhang, 2016. "Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 673-700, June.
    13. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    14. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    15. Chris Muris, 2020. "Efficient GMM Estimation with Incomplete Data," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 518-530, July.
    16. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    17. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    18. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    19. Sasaki, Yuya & Ura, Takuya, 2023. "Estimation and inference for policy relevant treatment effects," Journal of Econometrics, Elsevier, vol. 234(2), pages 394-450.
    20. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.

    More about this item

    Keywords

    Missing data; Empirical balancing; Treatment effect; Nonparametric likelihood;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://sticerd.lse.ac.uk/_new/publications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.