IDEAS home Printed from https://ideas.repec.org/p/cdl/uctcwp/qt3bc653j7.html
   My bibliography  Save this paper

Commercial Vehicle Classification using Vehicle Signature Data

Author

Listed:
  • Liu, Hang
  • Jeng, Shin-Ting
  • Andre Tok, Yeow Chern
  • Ritchie, Stephen G.

Abstract

Knowledge of vehicle classes is especially useful for monitoring commercial vehicles (CVs). Accurate CV class information will enhance truck traffic surveillance and fleet management, such as in port areas by providing information for environmental impact investigations. From an implementation perspective, it is recognized that there are often significant advantages to use the existing inductive loop infrastructure. However, inductive loops are not always the most practical surveillance technology considering the required implementation effort and cost. In this regard, this study explored the potential of adopting a new vehicle signature detection technology - wireless magnetic sensors - for CV classification. The vehicle signature data used for the development of the wireless sensor based models was collected from the University of California, Irvine (UCI) Commercial Vehicle Study Test-bed in San Onofre, California. Vehicle signatures from round inductive loop sensors were also collected for refining an existing round loop based model and for comparison purposes. Significant dropped data was observed in the wireless sensor signatures, which required the implementation of a dual sensor data recovery procedure to reconstruct the signatures, which would otherwise have been unusable. The results indicate that the single wireless sensor vehicle classification model, which is based on multi-layer perceptron neural network, successfully distinguished single-unit and multi-unit trucks with 93.5% accuracy. The double wireless sensor vehicle classification model, which adopted a K-means clustering and discriminant function, achieved 73.6% accuracy, while the round loop based model produced even better performance (85%) in testing, both according to the FHWA scheme F with 13 classes.

Suggested Citation

  • Liu, Hang & Jeng, Shin-Ting & Andre Tok, Yeow Chern & Ritchie, Stephen G., 2008. "Commercial Vehicle Classification using Vehicle Signature Data," University of California Transportation Center, Working Papers qt3bc653j7, University of California Transportation Center.
  • Handle: RePEc:cdl:uctcwp:qt3bc653j7
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/3bc653j7.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt3bc653j7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.