IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt9p18x8s8.html
   My bibliography  Save this paper

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

Author

Listed:
  • Burke, Andy

Abstract

This paper focuses on ultracapactors (electrochemical capacitors) as energy storage in vehicle applications and thus evaluates the present state-of-the-art of ultracapacitor technologies and their suitability for use in electric and hybrid drivelines of various types of vehicles. A key consideration in determining the applicability of ultracapacitors for a particular vehicle application is the proper assessment of the energy storage and power requirements. For hybrid-electric vehicles, the key issues are the useable energy requirement and the maximum pulse power at high efficiency. For a Prius size vehicle, if the useable energy storage is about 125 Wh and needed efficiency is 90-95%, analysis shown in this paper indicate that vehicles can be designed using carbon ultracapacitors (both carbon/carbon and hybrid carbon) that yield high fuel economy improvements for all driving cycles and the cost of the ultracapacitors can be competitive with lithium-ion batteries for high volume production and carbon prices of less than $20/kg. The use of carbon/carbon devices in micro-hybrids is particularly attractive for a control strategy (sawtooth) that permits engine operation near its maximum efficiency using only a 6 kW electric motor. Vehicle projects in transit buses and passenger cars have shown that ultracapacitors have functioned as expected and significant fuel economy improvements have been achieved that are higher than would have been possible using batteries because of the higher round-trip efficiencies of the ultracapacitors. Ultracapacitors have particular advantages for use in fuel cell powered vehicles in which it is likely they can be used without interface electronics. Development of hybrid carbon devices is continuing showing energy densities of 12 Wh/kg and a high efficiency power density of about 1000 W/kg. Vehicle simulations using those devices have shown that increased power capability in such devices is needed before full advantage can be taken of their increased energy density compared to carbon/carbon devices in some vehicle applications. Energy storage system considerations indicate that combinations of ultracapacitors and advanced batteries (Wh/kg>200) are likely to prove advantageous in the future as such batteries are developed. This is likely to be the case in plug-in hybrids with high power electric motors for which it may be difficult to limit the size and weight of the energy storage unit even using advanced batteries.

Suggested Citation

  • Burke, Andy, 2009. "Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt9p18x8s8, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt9p18x8s8
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/9p18x8s8.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burke, Andrew & Miller, Marshall & Zhao, Hengbing, 2012. "Ultracapacitors in Hybrid Vehicle Applications: Testing of New High Power Devices and Prospects for Increased Energy Density," Institute of Transportation Studies, Working Paper Series qt0mb8s9p7, Institute of Transportation Studies, UC Davis.
    2. Burke, Andrew & Zhu, Lin, 2015. "The economics of the transition to fuel cell vehicles with natural gas, hybrid-electric vehicles as the bridge," Research in Transportation Economics, Elsevier, vol. 52(C), pages 65-71.
    3. Ireneusz Pielecha & Wojciech Cieslik & Filip Szwajca, 2023. "Energy Flow and Electric Drive Mode Efficiency Evaluation of Different Generations of Hybrid Vehicles under Diversified Urban Traffic Conditions," Energies, MDPI, vol. 16(2), pages 1-17, January.
    4. Burke, Andrew & Miller, Marshall & Zhao, Hengbing, 2014. "Ultracapacitors in the Place of Batteries in Hybrid Vehicles," Institute of Transportation Studies, Working Paper Series qt08c8b94t, Institute of Transportation Studies, UC Davis.

    More about this item

    Keywords

    UCD-ITS-RR-09-23;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt9p18x8s8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.