IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt99h8c6gp.html
   My bibliography  Save this paper

Investigation of Tire/Pavement Noise for Concrete Pavement Surfaces: Summary of Four Years of Measurements

Author

Listed:
  • Rezaei, A.
  • Harvey, J.

Abstract

The objectives of the four-year quieter concrete pavement research study presented in this report were to measure noise from tire/pavement interaction, pavement smoothness, and drainability characteristics of concrete pavement surface textures currently used on the California state highway network. This study also was undertaken to develop recommendations for safe, durable, and cost-effective concrete pavement surface textures that minimize noise from tire/pavement interaction. The fourth and final year of this research study included testing on 60 test sections grouped by texture type as follows: 27 diamond ground (DG), 12 diamond grooved (Gr), 19 longitudinally tined (LT), 1 burlap drag (BD), and 1 longitudinally broomed (LB). Five of the 60 test sections were continuously reinforced concrete pavement (CRCP) and the rest were jointed plain concrete pavement (JPCP). This report presents the results of measurements of tire/pavement interaction noise and of the pavement smoothness and surface drainability characteristics of concrete pavement textures commonly used for new construction finishes or pavement preservation and rehabilitation strategies. Tire/pavement interaction noise was measured using the on-board sound intensity (OBSI) method; smoothness was measured in terms of the International Roughness Index (IRI) using a wide-spot (RoLineTM) laser; pavement surface drainability was measured using outflow meter measurements as well as in terms of Mean Profile Depth (MPD) and Mean Texture Depth (MTD). The results indicate that the OBSI levels for the concrete pavement sections evaluated in this study ranged from 100 dBA to 112 dBA, which is the same as the range of OBSI levels for concrete pavement textures measured in other similar studies. The average OBSI levels for the three commonly used texture types in California (DG, Gr, and LT) where the textures were not worn out ranged from 104 to 107 dBA, with DG and Gr sections typically being quieter than LT sections of similar age and texture condition. For comparison, the OBSI levels for the experimental grind-and-groove sections averaged 101 dBA. The average IRI values for the DG, Gr, and LT sections across all three texture conditions (new, aged, or worn out) were 68, 81, and 96 inches/mile, respectively. The results for the outflow meter times and the MPD values indicate that diamond-grooved sections had a greater capacity for allowing water to move out from under the tire. This suggests that diamond-grooved concrete pavements would generally be more effective in reducing the risk of hydroplaning than diamond-ground or longitudinally tined concrete pavements.

Suggested Citation

  • Rezaei, A. & Harvey, J., 2013. "Investigation of Tire/Pavement Noise for Concrete Pavement Surfaces: Summary of Four Years of Measurements," Institute of Transportation Studies, Working Paper Series qt99h8c6gp, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt99h8c6gp
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/99h8c6gp.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt99h8c6gp. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.