IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt3tb2c3js.html
   My bibliography  Save this paper

Technology and Fuel Transition: Pathways to Low Greenhouse Gas Futures for Cars and Trucks in the United States

Author

Listed:
  • Wang, Qian
  • Miller, Marshall
  • Fulton, Lewis

Abstract

In this study, we investigate how potential changes in US light-duty and medium/heavy-duty vehicle technology and fuel mix from 2020 to 2050 may affect the transition to a very low-carbon future in the United States. Given US targets to reach 50% or more zero-emission vehicle sales by 2030, we consider new sales trajectories for battery-electric vehicles and hydrogen fuel cell vehicles, and rates of uptake across the country needed to reach these. We also consider biofuels use (ethanol and renewable diesel) in remaining internal combustion engine cars and trucks to minimize GHG emissions from those vehicles. Costs of all vehicles sold, and their fuel and other operating costs, are calculated and projected. To account for characteristics of specific vehicle types (e.g., weight, application, fuel economy, drive cycle, etc.), we disaggregate light-duty vehicles and medium/heavy-duty vehicles into ten subcategories. Relative to a business-as-usual case, we develop a series of low-carbon scenarios where three regions of the US adopt zero-emission vehicles at different rates. One is California, where the strongest targets and policies have been set. We also consider “Section 177” states that have agreed to adopt at least some California policies, and the third is the remaining states. Our findings suggest that even slower adoption scenarios can reduce greenhouse gas emissions in 2050 by 90% of 2015 levels. Greater reductions can be attained with rapid adoption cases. However, even a case with all US states adopting California-style policies with a five-year delay—for LDVs, essentially the equivalent of the April 2023 regulatory proposals of the US EPA—may not be quite sufficient to reach the apparent US targets. Despite significant upfront investments required to undertake transitions in the near-term, these scenarios all feature large net savings to consumers after 2030 (or sooner) as fuel and maintenance savings exceed higher costs in purchasing vehicles. Overall net savings from 2020 to 2050 (mostly accrued after 2030) are in the range of $1.7 to $4.8 trillion. However, achieving these full benefits could be challenging due to the need for a rapid rate of zero-emission vehicle adoption and possibly high production volumes of low-carbon biofuels.

Suggested Citation

  • Wang, Qian & Miller, Marshall & Fulton, Lewis, 2023. "Technology and Fuel Transition: Pathways to Low Greenhouse Gas Futures for Cars and Trucks in the United States," Institute of Transportation Studies, Working Paper Series qt3tb2c3js, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt3tb2c3js
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/3tb2c3js.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burke, Andrew & Zhao, Jingyuan, 2015. "Supercapacitors in Micro- and Mild Hybrids with Lithium Titanate Oxide Batteries: Vehicle Simulations and Laboratory Tests," Institute of Transportation Studies, Working Paper Series qt87j1k9fn, Institute of Transportation Studies, UC Davis.
    2. Unknown, 2019. "ACI Update ACI News Autonomous Vehicles at Airports," Journal of Airport Management, Henry Stewart Publications, vol. 14(1), pages 98-99, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fulton, Lewis & Miller, Marshall & Burke, Andrew & Wang, Qian & Yang, Chris, 2019. "Technology and Fuel Transition Scenarios to Low Greenhouse Gas Futures for Cars and Trucks in California," Institute of Transportation Studies, Working Paper Series qt8wn8920p, Institute of Transportation Studies, UC Davis.

    More about this item

    Keywords

    Engineering; Social and Behavioral Sciences;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt3tb2c3js. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.